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ABSTRACT 

This paper focuses on identifying recurring patterns among blockchain address 

categories using the FP-Growth algorithm, which is known for its efficiency in mining 

frequent itemsets within large datasets. The study provides insights into blockchain 

ecosystem dynamics by analyzing category associations across different blockchain 

networks like Ethereum and Bitcoin. Through this analysis, significant patterns were 

found, such as the frequent co-occurrence of categories related to smart contracts 

and exchanges, highlighting the central role of these categories in blockchain 

interactions. Additionally, the study delves into the influence of data sources on 

detected patterns, revealing that various data collection methods contribute to distinct 

biases, which affect category associations. The findings offer practical applications 

for blockchain analytics, such as improving classification models, anomaly detection, 

and enhancing regulatory compliance. This study contributes to blockchain research 

by showcasing how association rule mining can improve the categorization and 

understanding of blockchain address behaviors. The use of FP-Growth, as opposed 

to more traditional methods, enables faster and more comprehensive analysis, which 

is particularly valuable given the extensive nature of blockchain datasets. The 

research also points to potential directions for future work, such as integrating 

temporal data to observe changes over time and exploring additional blockchain 

networks to broaden the scope of insights. The study emphasizes the need for 

continuous advancements in blockchain address analysis to support security, 

transparency, and regulatory initiatives within this rapidly evolving digital ecosystem. 

Keywords FP-Growth algorithm, blockchain address categorization, association rule 

mining, blockchain analytics, data source biases 

Introduction 

Blockchain technology represents a decentralized, distributed ledger system 

that facilitates secure and transparent transactions across a network of 
computers or nodes. Originally developed to support Bitcoin, blockchain has 

rapidly evolved to encompass a wide range of applications across various 
industries, including finance, healthcare, supply chain management, and 
governance. Its fundamental characteristics—decentralization, immutability, 

and transparency—enable blockchain to enhance trust and security in digital 
transactions [1]. This tamper-resistant record of transactions is achieved 

through a unique structure where each transaction is grouped into a block and 
linked cryptographically to the preceding one. This chain of blocks ensures that 
once data is recorded, it cannot be altered without the consensus of the 

network, thereby safeguarding against fraud and unauthorized access. 
Additionally, consensus mechanisms like proof of work and proof of stake 

 

 

Submitted 27 December 2024 

Accepted 2 February 2025 

Published 8 March 2025 

Corresponding author 

Latasha Lenus, 

13CSD0034@sutd.edu.sg  

Additional Information and 

Declarations can be found on 

page 59 

DOI: 10.47738/jcrb.v2i1.24 

 Copyright 

2025 Lenus 

Distributed under 

Creative Commons CC-BY 4.0 

https://doi.org/10.47738/jcrb.v2i1.24
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/


 Journal of Current Research in Blockchain 

 

Lenus (2025) J. Curr. Res. Blockchain. 

 

42 

 

 

bolster the security and reliability of blockchain systems by establishing a 

distributed verification process. This attribute is especially crucial in sectors 
such as healthcare, where the integrity of sensitive patient data must be 

maintained [2]. 

Beyond transaction security, blockchain technology offers innovative 

capabilities through smart contracts, which are self-executing contracts that 
enforce agreements automatically based on predefined conditions. These 
contracts significantly reduce the need for intermediaries, streamlining 

operations and lowering costs [3]. In supply chain management, for instance, 
blockchain can provide real-time tracking of goods, fostering transparency and 

accountability among stakeholders. The potential of blockchain to revolutionize 
traditional business models is substantial, as it promotes new forms of 
collaboration and value creation across industries [4]. Thus, as blockchain 

continues to gain traction across various sectors, its impact on enhancing 
efficiency and transparency in business operations is anticipated to grow, 

solidifying its role as a transformative force in data management and transaction 
processing [5], [6], [7]. 

Blockchain networks serve as essential platforms for implementing and 

executing a wide array of decentralized applications and services, with each 
network offering unique features that cater to specific use cases. Bitcoin, the 

first and most widely recognized cryptocurrency, operates on a proof-of-work 
(PoW) consensus mechanism, where miners solve complex mathematical 
problems to validate transactions. Its primary role as a decentralized digital 

currency is to enable peer-to-peer transactions without intermediaries, offering 
a secure and immutable platform upheld by a vast network of miners. Ethereum, 

launched in 2015, extends blockchain's functionality by introducing smart 
contracts, allowing developers to build decentralized applications (DApps) 
across domains such as decentralized finance (DeFi) and non-fungible tokens 

(NFTs). Ethereum’s proof-of-stake (PoS) mechanism further enhances its 
scalability and energy efficiency, making it a critical innovation hub within the 

blockchain ecosystem. 

Other networks, such as BNB Chain, Polygon, and Avalanche C-Chain, 

contribute to the blockchain landscape by addressing specific challenges like 
transaction speed, cost, and interoperability. BNB Chain combines proof-of-
stake and proof-of-authority mechanisms to support fast and low-cost 

transactions, with a particular emphasis on DeFi applications. Polygon functions 
as a Layer 2 scaling solution for Ethereum, utilizing sidechains and plasma 

chains to improve transaction throughput while maintaining security, thus 
enabling a variety of DApps and DeFi projects to flourish with enhanced 
scalability [8]. Lastly, Avalanche C-Chain, part of the broader Avalanche 

network, provides an Ethereum-compatible platform that supports rapid 
transaction processing through its Avalanche consensus mechanism, 

positioning it as a competitor in sectors like DeFi and NFTs. Collectively, these 
networks underscore the diverse and evolving nature of blockchain technology, 
highlighting the adaptability and versatility of blockchain as a foundation for 

innovative digital solutions across industries. 

Cryptocurrency addresses are foundational to the blockchain ecosystem, acting 

as unique identifiers that facilitate transactions across decentralized networks. 
Each address, derived from a public key, enables users to send and receive 
digital assets while securely recording transactions on the blockchain. Beyond 
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simple transaction facilitation, these addresses are integral to the structure and 

security of blockchain systems, allowing them to maintain a decentralized and 
transparent framework. For example, Bitcoin addresses are pseudonymous, 

meaning while transactions are transparent, the identities behind the addresses 
remain obscured. This pseudo-anonymity provides users with a degree of 

privacy; however, it also introduces challenges to regulatory compliance and 
the prevention of illicit activities, such as money laundering and fraud. Although 
Bitcoin transactions are often perceived as anonymous, analyses of transaction 

patterns can sometimes reveal the identities behind certain addresses, 
underscoring the need for deeper understanding and scrutiny of address 

behaviors within blockchain networks. 

Cryptocurrency addresses also demonstrate varied activity patterns, with 
research showing a long-tail distribution, where a small number of addresses 

account for most transactions. This uneven activity distribution provides insights 
into user behavior and reflects the broader health and dynamics of the 

cryptocurrency economy. By studying these transaction patterns, researchers 
can identify prominent market participants and better understand the flow of 
funds within blockchain networks. Another key aspect of address analysis is 

address clustering, which links multiple addresses to a single entity based on 
observed transaction patterns and heuristics. Clustering facilitates a clearer 

picture of user behavior and the relationships between different entities, which 
is especially valuable for forensic investigations and regulatory compliance 
efforts [9]. These functionalities—enabling both transaction privacy and 

analytical insights—demonstrate the complex and essential role of 
cryptocurrency addresses in maintaining the security and integrity of blockchain 

ecosystems. 

Categorizing cryptocurrency addresses is critical for enhancing security, 
supporting analytics, and facilitating regulatory compliance within blockchain 

networks. As cryptocurrencies continue to grow in popularity, the need for 
effective address classification systems has become increasingly important to 

manage the challenges posed by pseudonymity and the potential for misuse. In 
terms of security, the anonymous nature of blockchain transactions can attract 

malicious actors, and categorizing addresses can help security analysts track 
suspicious activities, such as those associated with scams or fraud. Address 
classification is essential for user protection, as it allows for the identification of 

various threat types and their connections within the ecosystem. De-
anonymizing clusters of addresses also strengthen forensic investigations, 

providing key insights into illicit activities by revealing connections among 
entities involved in illegal operation. 

From an analytics perspective, categorizing addresses enhances the 

understanding of user behavior and market trends. Analyzing transaction 
patterns and clustering related addresses allows analysts to identify significant 

players in the cryptocurrency economy, assess the market's overall health, and 
trace the movement of funds. By examining address categories and their 
transaction histories, researchers can perform comprehensive analyses of fund 

flows, which are crucial for market research, risk assessment, and economic 
modeling within the cryptocurrency space. Address categorization also supports 

regulatory compliance by helping authorities monitor for activities linked to 
money laundering, terrorism financing, and other illicit uses. As regulators 
implement stricter requirements for cryptocurrency exchanges and service 
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providers, classifying addresses based on entity types and behaviors enables 

a more effective response to these mandates. Importance of regulatory 
frameworks that prioritize data privacy and security, both of which can be 

bolstered by robust address classification methods. In sum, categorizing 
cryptocurrency addresses is indispensable for maintaining the integrity of 

blockchain ecosystems, offering protection to users, and ensuring adherence to 
regulatory standards. 

Address categorization in the blockchain environment presents significant 

challenges due to the complexity of multiple category assignments and the 
sheer volume of data involved. Many blockchain addresses belong to more than 

one category, reflecting a range of functions or activities. For instance, a single 
address may be associated with both exchange and gaming activities or may 
operate within DeFi (decentralized finance) while also engaging in smart 

contract operations. This multi-label characteristic complicates the process of 
categorizing addresses accurately, as each address can represent diverse and 

overlapping roles. Additionally, this study involves a dataset containing 10 
million blockchain addresses, which demands efficient data processing 
techniques to manage and analyze the vast amount of information effectively. 

Handling large-scale data of this magnitude is resource-intensive and requires 
optimized methods to extract meaningful insights within a reasonable time 

frame. 

To address these challenges, identifying meaningful patterns among categories 
becomes essential. Association mining methods, such as the FP-Growth 

algorithm, enable the discovery of frequent co-occurrences among categories, 
offering insights that enhance classification accuracy and address 

understanding. Traditional mining techniques often need help with multi-label 
data and may fail to capture complex relationships among categories effectively. 
Efficient association mining helps not only to uncover these hidden relationships 

but also to streamline the categorization process by focusing on category 
combinations that occur frequently. Recognizing patterns of co-occurrence 

among blockchain address categories can provide valuable information on 
ecosystem dynamics, revealing how different categories interact and identifying 

prevalent patterns that may indicate significant behaviors or trends within the 
blockchain landscape. 

The exploration into discount strategies on consumer ratings and the 

comparative analysis of sentiment classification techniques underscore how 
nuanced approaches to consumer behavior can unveil critical insights in digital 

markets [10], [11]. Similarly, sentiment trends in Bitcoin-related tweets and 
predictive modeling of blockchain stability present novel opportunities to 
analyze decentralized networks using advanced clustering and machine 

learning methodologies [12], [13]. Further, a comprehensive analysis of Twitter 
conversations in the metaverse space highlights shifting public sentiment, while 

an empirical analysis of virtual property prices in Decentraland examines 
evolving digital asset markets, providing context to dynamic economic patterns 
[14], [15]. Combined, these works illustrate the diverse applications of data-

driven methods in analyzing complex behaviors within blockchain ecosystems 
and beyond. 

The primary goal of this research is to discover and analyze co-occurrence 
patterns among blockchain address categories, with the aim of enhancing the 
understanding of address behaviors within blockchain networks. By focusing on 
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co-occurrence patterns, the study seeks to reveal how frequently different 

categories are associated with one another and how these patterns differ across 
various blockchain networks, such as Bitcoin and Ethereum. Understanding 

these patterns provides a foundation for developing more accurate classification 
models that capture the complexities of multi-label address categorization. 

The research objectives are centered on utilizing the FP-Growth algorithm to 
efficiently mine frequent category combinations among blockchain addresses. 
Specifically, the study aims to compare association patterns across different 

blockchain networks to observe variations and commonalities in address 
behaviors. Additionally, the research assesses the influence of data sources on 

category associations, recognizing that variations in data collection methods 
and sources can affect the types of associations identified. The study provides 
insights into how address categories co-occur within the blockchain ecosystem, 

with the potential to inform both research and practical applications in 
blockchain analytics. 

This study contributes to blockchain analytics by enhancing the understanding 
of address behaviors and the dynamics of the blockchain ecosystem. By 
identifying and analyzing co-occurrence patterns among blockchain address 

categories, the research provides insights into how different types of addresses 
interact within blockchain networks. This knowledge deepens the understanding 

of blockchain ecosystem dynamics, highlighting prevalent behaviors and 
identifying potential indicators of significant activities. Furthermore, the study’s 
findings can inform the development of more nuanced classification models that 

accurately reflect the multi-functional nature of blockchain addresses, improving 
the precision of address categorization in both academic research and industry 

applications. 

From a practical perspective, the study’s findings have implications for 
enhancing security and regulatory measures within blockchain systems. 

Efficient and accurate address categorization aids in the detection of anomalies, 
such as unusual patterns that may indicate fraudulent activities or other security 

threats. Additionally, by improving the classification of blockchain addresses, 
the study supports the development of tools that assist regulatory bodies in 

monitoring blockchain activities, promoting transparency, and ensuring 
compliance with financial regulations. Overall, the study advances both the 
theoretical understanding and practical application of blockchain address 

categorization, contributing to the broader field of blockchain analytics and 
security. 

Literature Review 

Blockchain Address Classification 

In the field of blockchain analytics, a range of classification techniques has been 
developed to improve the interpretation and utility of blockchain data. Various 

methods leverage machine learning, anomaly detection, and ensemble learning 
techniques to classify and analyze blockchain transactions effectively. For 
example, cascading machine learning models have been widely used to classify 

Bitcoin entities. Zola et al. demonstrated the effectiveness of this approach by 
utilizing input features from blockchain data to classify different Bitcoin entities, 

achieving impressive accuracy rates that highlight the robustness of ensemble 
learning techniques in this context [16]. Ensemble methods, which involve 
training multiple classifiers on diverse datasets, enhance the overall 
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classification process by combining multiple perspectives and improving 

predictive performance [16]. Through this approach, researchers have been 
able to extract meaningful behavioral patterns, which contribute to a deeper 

understanding of blockchain transactions and potential anomalies within the 
network. 

Another significant advancement in classification techniques is the use of 
decision trees within distributed networks, which facilitate secure and privacy-
preserving data sharing. Blockchain-based ID3 decision tree framework, which 

leverages homomorphic encryption to maintain data privacy while enhancing 
classification accuracy. This method is particularly valuable in applications 

where data integrity and confidentiality are paramount, such as in healthcare-
related blockchain analytics [17]. Anomaly detection has also become a critical 
component of blockchain analytics. Martin et al. explored the application of 

machine learning and network representation methods to detect unusual 
transaction patterns, demonstrating that supervised learning methods 

outperform unsupervised approaches in this context [18]. Additionally, dynamic 
attribute graph anomaly detection method uses graph attention mechanisms to 
capture temporal features, further improving the accuracy of blockchain 

transaction classification. Together, these approaches provide a diverse toolkit 
for enhancing security, understanding user behaviors, and detecting potential 

threats within blockchain systems. 

Multi-label classification (MLC) presents distinct challenges in cases where 
each instance, such as a blockchain address, may belong to multiple categories 

simultaneously. Unlike traditional single-label classification, MLC requires 
models to account for multiple, non-exclusive labels, adding layers of complexity 

related to computational efficiency, prediction accuracy, and evaluation 
reliability. The computational demands of MLC can be significant, particularly 
as the number of label combinations grows exponentially. The classification 

process becomes increasingly challenging as the number of potential label 
combinations expands. To address this, researchers have introduced 

ensemble-based approaches that combine multiple classifiers, balancing 
improved performance with reduced computational overhead. Hemavati et al. 

developed a multi-layered stacked ensemble method that achieves 
dimensionality reduction while preserving classification accuracy, effectively 
streamlining the MLC process [19]. 

Prediction accuracy in MLC also faces obstacles due to label dependencies, 
where the relationships between labels can affect the accuracy of predicted 

label sets. Venkatesan et al. pointed out that MLC is inherently more complex 
than single-label classification because of the need to consider label 
correlations [20]. In response to these challenges, advanced models have been 

developed, such as Tang et al.’s improved Transformer model, which captures 
complex relationships between labels to improve prediction accuracy [21]. 

Another concern is the reliability of evaluation metrics in MLC. Traditional 
accuracy measures may not adequately reflect model performance due to label 
imbalances, making it essential to utilize metrics that account for the multi-label 

nature of the data. Charte et al. emphasized the importance of tailored 
evaluation metrics and resampling algorithms to ensure a reliable assessment 

of MLC models [22]. Through these innovations, researchers continue to 
address the unique challenges of MLC, leveraging advanced algorithms to 
enhance the accuracy and reliability of multi-label classification systems in 
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blockchain analytics.  

Address categorization in blockchain analytics is a critical area that focuses on 
classifying blockchain addresses based on their usage patterns, behaviors, and 

associated entities. This process is fundamental for improving transaction 
insights, enhancing security, and enabling compliance with regulatory 

requirements. A notable study in this domain is Le's exploration of an 
Autonomous Coin Mixer (AMR), which addresses privacy concerns by 
clustering addresses to minimize the risk of deanonymization in blockchain 

transactions [23]. This work underscores the dual challenge of maintaining 
privacy for users while effectively categorizing addresses to improve blockchain 

transparency and security. Similarly, Sahoo et al. proposed a hierarchical model 
for categorizing nodes within blockchain networks, which can be applied to 
address classification by defining address roles and behaviors [24]. This model 

provides a structured framework for understanding the functions of various 
addresses in the blockchain ecosystem, aiding in regulatory compliance and 

transaction monitoring. 

Another important contribution is Joshi et al.’s comprehensive survey on 
blockchain security and privacy issues, which discusses address categorization 

as a vital tool for enhancing security. Joshi and colleagues argue that 
categorizing blockchain addresses allows for better identification of security 

risks, improving the robustness of blockchain systems against illicit activities 
[25]. By optimizing address categorization processes, blockchain systems can 
potentially handle more transactions, thus contributing to scalability and overall 

system performance. These studies collectively highlight the importance of 
address categorization as a means to improve both the functionality and 

security of blockchain networks, addressing critical issues such as privacy, 
scalability, and compliance within the evolving blockchain landscape. 

Association Rule Mining in Blockchain 

Association rule mining (ARM) is a key data mining technique focused on 
uncovering significant relationships and patterns within large datasets. First 
introduced by Agrawal et al. in 1993, ARM has since evolved as an essential 

tool across multiple domains, from retail to healthcare and beyond [26], [27]. Its 
primary objective is to identify strong association rules that reflect co-occurrence 

relationships between items in transactional datasets, typically expressed in "if-
then" statements, such as X → Y, where X and Y represent itemsets [28], [29]. 

The appeal of ARM lies in its ability to derive actionable insights from extensive 
data, enabling organizations to understand underlying patterns that can inform 
strategic decisions and enhance operational efficiency. 

ARM has substantial relevance in practical applications. For instance, in market 
basket analysis, retailers use ARM to determine frequently co-purchased 

products, which can improve store layout, cross-selling opportunities, and 
inventory management strategies [30], [31]. Beyond retail, ARM is employed in 
healthcare to analyze treatment outcomes, aiding clinicians in predicting patient 

responses based on treatment combinations. It is also applied in finance for 
fraud detection, where ARM identifies irregular transaction patterns that may 

signal fraudulent activities [32], [33]. Typically, ARM involves two steps: first, 
identifying frequent itemsets that meet a minimum support threshold, and 
second, generating association rules that fulfill a specified confidence level [28], 

[29]. To accommodate growing data volumes, various algorithms, such as 
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Apriori and FP-Growth, have been developed to optimize ARM's efficiency by 

reducing computational demands and enhancing rule quality [34], [35]. Recent 
advances also include mining both positive and negative associations, offering 

a holistic view of relationships within datasets (Jiang et al., 2008; Mani, 2012). 
Thus, ARM remains an invaluable asset for uncovering hidden relationships 

within data, driving informed decision-making across industries. 

The Apriori and FP-Growth algorithms are two of the most widely used methods 
in ARM, each with distinct advantages and limitations suited to various data 

mining tasks. The Apriori algorithm, pioneered by Agrawal et al. in 1994, 
employs an iterative approach to identify frequent itemsets by generating and 

pruning candidate itemsets based on a minimum support threshold, a process 
that requires multiple database scans [36]. Apriori’s main strength lies in its 
simplicity and ease of implementation, making it a popular choice for 

introductory applications and smaller datasets. However, this algorithm 
becomes less efficient with larger datasets, as the necessity for multiple scans 

increases computational overhead and memory usage, often resulting in longer 
execution times and challenges in real-time applications [37]. 

In contrast, the FP-Growth algorithm, which was developed to overcome 

Apriori’s limitations, operates by constructing a compact data structure known 
as the FP-tree. This structure enables FP-Growth to mine frequent item sets 

without generating candidate sets, reducing database scans to just two [38]. 
The primary advantages of FP-Growth include its ability to handle large datasets 
efficiently and to quickly generate frequent item sets, making it well-suited for 

applications with high transaction volumes [38]. Additionally, the tree structure 
used by FP-Growth improves memory management compared to Apriori’s 

candidate generation approach [38]. However, FP-Growth can be more 
challenging to implement and may present a steeper learning curve, particularly 
for practitioners new to data mining [38] . Thus, while Apriori is user-friendly and 

effective for smaller datasets, FP-Growth provides a more scalable and efficient 
solution for large-scale data mining tasks, highlighting the importance of 

choosing an algorithm that aligns with the specific requirements of the data 
analysis. 

FP-Growth Algorithm 

The FP-Growth algorithm is a highly efficient method for mining frequent item 
sets within large datasets, particularly when compared to traditional approaches 

like the Apriori algorithm. At the core of FP-Growth is the Frequent Pattern Tree 
(FP-Tree) structure, which allows the algorithm to compress the transaction 
database into a compact form, eliminating the need for candidate generation 

and significantly reducing the computational load [39]. The algorithm operates 
in two primary phases: FP-Tree construction and frequent itemset mining. In the 

first phase, the algorithm performs a preliminary scan of the dataset to identify 
all items that meet a specified minimum support threshold, filtering out 
infrequent items to focus on those with significant co-occurrence. After 

determining the frequency of each item, the transactions are sorted in 
descending order of item frequency, which aids in constructing a compact and 

efficient tree structure. 

In the second phase, the FP-Growth algorithm mines the FP-Tree for frequent 
itemsets by recursively building conditional FP-Trees. These conditional trees 

represent subsets of the original FP-Tree, each corresponding to a frequent 
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item. By traversing these smaller trees, the algorithm can efficiently extract all 

frequent patterns associated with each item, employing a divide-and-conquer 
strategy that further enhances performance [40], [41]. This approach allows the 

algorithm to bypass the resource-intensive candidate generation step, a 
common bottleneck in other algorithms, thus providing a scalable solution for 

frequent itemset mining. Additionally, FP-Growth’s recursive mining process is 
tailored for parallelization, which can be advantageous when handling large, 
complex datasets [42]. The FP-Growth algorithm’s efficiency and scalability 

make it an invaluable tool in various data mining applications, enabling rapid 
extraction of meaningful patterns from vast amounts of transactional data [43], 

[44]. 

The FP-Tree, or Frequent Pattern Tree, is the foundation of the FP-Growth 
algorithm, facilitating efficient data compression and mining of frequent item 

sets without the need for iterative candidate generation. The FP-Tree 
construction begins with a first pass through the transaction database to count 

item frequencies, filtering items that do not meet the minimum support 
threshold. This step generates a sorted list of frequent items, which is then used 
to organize subsequent transactions in a way that maximizes the sharing of 

common prefixes [45], [46]. During the second pass, each transaction is 
transformed into a path in the tree, with items added in descending order of 

frequency. Suppose items in the transaction share a prefix with existing nodes 
in the FP-Tree. In that case, they are added as extensions of those nodes, 
effectively compressing the dataset by consolidating similar transactions [47]. 

As the FP-Tree is constructed, each node records an item and its frequency 
count and links to sibling nodes, creating a compact data structure that stores 

essential information for subsequent mining phases. Additionally, a header 
table is maintained to track each item’s occurrences and provide quick access 
to nodes within the tree [43]. This structure enables the algorithm to mine 

frequent item sets by recursively constructing conditional FP-Trees for each 
frequent item, focusing only on relevant subsets of the data and thus enhancing 

mining efficiency. The ability to represent the transaction database in a tree 
format allows the FP-Growth algorithm to effectively compress large volumes of 

data, providing an optimized pathway for extracting frequent patterns [41], [48]. 
The FP-Tree’s compact design not only improves memory usage but also 
supports rapid traversal and retrieval of frequent itemsets, reinforcing the FP-

Growth algorithm’s reputation as a scalable and powerful data mining tool [49]. 

Method 

The research method for this study consists of several steps to ensure a 

comprehensive and accurate analysis. The flowchart in Figures 1 outlines the 
detailed steps of the research method. 

 

Figure 1 Research Method Flowchart 
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Data Description 

The dataset used in this study, `dataset_10m_ads.csv`, comprises 10 million 
labeled cryptocurrency addresses, offering a robust foundation for analyzing 
blockchain address categories and their co-occurrence patterns. The dataset 

contains five columns: `chain`, `address`, `categories`, `entity`, and `source`. 
The `chain` column specifies the blockchain network associated with each 

address, such as Bitcoin mainnet, Ethereum mainnet, BNB Chain mainnet, 
Polygon mainnet, or Avalanche C-Chain. The `address` column represents the 

unique identifier for each cryptocurrency address, serving as the primary 
reference for transactions within the respective blockchain network. The 
`categories` column provides a multi-label classification for each address, 

reflecting its association with up to 62 possible categories, such as 
decentralized finance (DeFi), centralized exchanges (cex), smart contracts, and 

more. This column allows for multi-label assignments, capturing the diverse 
roles and activities that a single address may exhibit. 

The `entity` column contains the associated entity or organization tied to the 

address, although it may be missing or null for some addresses. When present, 
it offers valuable context about the address's role in the broader blockchain 

ecosystem, such as whether it is linked to a specific exchange, wallet service, 
or other identifiable entity. Finally, the `source` column indicates the origin of 
the classification data, with values such as `ground_truth`, `heuristic`, or 

`external`. This field provides insight into the reliability of the data by specifying 
how the label assignments were determined. Together, these columns form a 

rich dataset for exploring and analyzing address categories and their 
relationships within the blockchain environment. 

Data preprocessing was critical for ensuring that the dataset was suitable for 

association mining analysis. Given that the `categories` column allows for multi-
label assignments, multi-hot encoding was employed to transform this field into 

binary columns, representing each unique category as a separate binary 
indicator. This transformation facilitated the identification of category co-
occurrence patterns while enabling efficient data manipulation and analysis. 

The process involved extracting all unique categories, cleaning whitespace, and 
creating a set of dummy variables to represent the presence or absence of each 

category for each address. 

Handling missing data was another important aspect of preprocessing. The 

`entity` field contained a significant number of missing values. To address this, 
missing ̀ entity` values were filled with the placeholder "Unknown," ensuring that 
all records retained a consistent format. This approach preserved data integrity 

while acknowledging the limitations of the available information. Additionally, 
infrequent categories were filtered out to reduce noise and focus on the most 

relevant patterns. Categories appearing in fewer than a specified minimum 
number of addresses were excluded from further analysis, as their low 
frequency made meaningful pattern identification unlikely. This filtering step 

refined the dataset, enhancing the quality and interpretability of subsequent 
analyses by focusing on prominent and recurring category associations. 

Exploratory Data Analysis (EDA) 

The initial phase of EDA focused on understanding the distribution of blockchain 
address categories within the dataset. The dataset contained several multi-label 

categories, which required analyzing the frequency of each category across the 
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entire dataset. The most frequently occurring categories included 

"smart_contract," "exchange," and "liquid_staking," with counts of 26,875, 
18,345, and 14,956, respectively. These categories accounted for a substantial 

portion of the data, indicating their prevalence within the blockchain address 
ecosystem. Conversely, the least frequent categories, such as 

"business_or_services," "dapp," and "mixer," had significantly lower counts, 
highlighting the imbalance across different address types. This uneven 
distribution emphasized the need to focus on dominant categories while filtering 

out those with limited occurrences for more targeted analysis. 

A more granular frequency analysis provided insights into the percentage 

representation of each category. For instance, "smart_contract" addresses 
comprised 26.88% of the total dataset, followed by "exchange" at 18.35% and 
"liquid_staking" at 14.96%. This breakdown underscored the concentration of 

specific address types in the blockchain ecosystem. Such detailed descriptive 
statistics helped identify key areas of interest and guided further analysis by 

shedding light on the dominant behaviors and interactions within the data. 

The next step in the EDA involved analyzing category co-occurrences to identify 
relationships and patterns among different address types. Pairwise co-

occurrence frequencies were calculated to determine how often specific 
categories appeared together within the same address. This analysis revealed 

that certain category pairs exhibited a high degree of co-occurrence, such as 
"cex" and "exchange," which appeared together in 3,044 instances. The co-
occurrence of "nft" with "smart_contract" and "liquid_staking" with 

"smart_contract" were also noteworthy, with 1,497 and 341 occurrences, 
respectively. These pairwise associations highlighted potential functional 

linkages and shared behaviors within blockchain addresses, offering deeper 
insights into their interactions. 

To provide a clearer picture of the co-occurrence dynamics, a co-occurrence 

matrix was constructed. This matrix captured the frequencies of category 
pairings, helping to quantify the strength of relationships among categories. The 

top co-occurring pairs underscored the prevalence of specific patterns within 
the dataset, providing a foundation for further exploration of complex 

associations and dependencies among blockchain addresses. This step proved 
crucial for uncovering potentially significant patterns and behaviors, informing 
subsequent stages of analysis. 

Visualizations played a critical role in illustrating the findings from the EDA. 
Heatmaps were employed to display category co-occurrence matrices, offering 

a visual representation of the strength and frequency of category relationships. 
The heatmap for the top 20 categories revealed concentrated clusters of high 
co-occurrence, emphasizing strong interdependencies among certain address 

categories. Bar charts were also utilized to depict the most and least frequent 
categories, providing a clear and intuitive view of the distribution within the 

dataset. The top categories were shown to have a disproportionately large 
share of occurrences, while the bottom categories highlighted the presence of 
niche or less common address types. 

To further explore the relational dynamics, network graphs were generated to 
visualize category relationships and their co-occurrence patterns. These graphs 

depicted categories as nodes and co-occurrences as edges, with edge 
thickness representing the strength of the association. The network 
visualization offered an intuitive way to understand the complexity and structure 
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of interactions among address categories. By focusing on relationships with a 

co-occurrence threshold, the network graph provided a clear depiction of 
dominant associations while filtering out weaker, less significant connections. 

This comprehensive visual analysis underscored the interconnected nature of 
blockchain address categories and guided the identification of key patterns and 

trends within the dataset. 

Association Rule Mining with FP-Growth 

To apply the FP-Growth algorithm on the preprocessed blockchain address 

dataset, the first step involved loading the dataset into a DataFrame and 
ensuring that all category columns were converted into a Boolean format. This 
conversion was necessary for efficient frequent itemset mining, as the FP-

Growth algorithm requires binary inputs for each category to indicate the 
presence or absence of a category for each address. The FP-Growth algorithm 

was then applied using a minimum support threshold of 0.5%, meaning that 
itemsets appearing in at least 0.5% of the transactions were considered 
frequent. This relatively low threshold was selected to capture meaningful but 

not overly rare patterns among the categories. The output of this process was 
a set of frequent itemsets, each representing combinations of categories that 

occurred together at a frequency above the specified support level. 

Once frequent itemsets were identified, association rules were generated based 
on a minimum confidence threshold of 20%. Confidence measures the 

likelihood of the consequent category appearing given the presence of the 
antecedent category. Lowering the confidence threshold to 20% allowed for the 

generation of a broader range of rules while maintaining a focus on those with 
statistically meaningful support. This process provided a basis for exploring 
potential co-occurrence relationships among categories, ultimately leading to a 

deeper understanding of how various blockchain address categories interact. 

The choice of minimum support and confidence thresholds was guided by both 

theoretical considerations and empirical observations. The minimum support 
threshold of 0.5% was selected to ensure that frequently co-occurring 
categories were captured without being overwhelmed by noise from rare 

occurrences. This balance was necessary for extracting meaningful patterns 
while avoiding an excessive number of insignificant itemsets that could hinder 

interpretability. Similarly, a minimum confidence threshold of 20% was chosen 
to focus on rules with a reasonable degree of predictive reliability. Confidence 

levels lower than this would have risked generating rules with little practical 
significance, whereas higher thresholds would have limited the scope of 
discovered rules (Han et al., 2000). 

This combination of support and confidence thresholds enabled a focused yet 
comprehensive exploration of category associations. Parameter tuning was 

essential for tailoring the FP-Growth algorithm to the unique characteristics of 
the dataset, maximizing its ability to uncover co-occurrence patterns. 
Adjustments to these thresholds would have affected the number and nature of 

frequent itemsets and rules generated, highlighting the importance of informed 
parameter selection for effective association mining. 

The process of extracting significant association rules from the identified 
frequent itemsets involved analyzing patterns that met or exceeded the 
specified support and confidence thresholds. Each rule, represented in the form 

"antecedent → consequent," illustrated a potential relationship between 
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categories. For example, the rule "cex → exchange" indicated that addresses 

categorized as centralized exchanges frequently co-occurred with exchange-
related activities. This particular rule had a support value of 0.03044 and a 

confidence level of 23.48%, suggesting a relatively strong association within the 
data. Similarly, rules such as "nft → smart_contract" highlighted important co-

occurrences that offered insight into the interactions between non-fungible 
token addresses and smart contract functionalities. 

The extracted rules were further analyzed based on lift, leverage, and conviction 

metrics to assess their strength and significance. Lift values greater than one 
indicated a positive association between the antecedent and consequent 

categories, while leverage and conviction provided additional context for 
understanding rule significance and potential causal relationships. This process 
ensured that only meaningful and actionable rules were retained for further 

analysis, providing a robust framework for understanding category dynamics 
within the blockchain ecosystem. The most significant rules were saved and 

visualized for further interpretation, offering a comprehensive view of category 
interactions and their implications within the dataset. 

Cross-Chain Analysis 

The cross-chain analysis focused on segmenting the data based on distinct 
blockchain networks, including Ethereum Mainnet, Bitcoin Mainnet, BNB Chain 
Mainnet, Avalanche C-Chain, and Polygon Mainnet. Each subset of data was 

analyzed separately to uncover unique patterns and frequent itemsets within 
each network. For example, the Ethereum Mainnet data, consisting of 63,462 

records, revealed frequent itemsets such as "smart_contract," "exchange," and 
combinations like "cex, exchange," suggesting that smart contracts and 
centralized exchanges play prominent roles within the Ethereum ecosystem. 

The Bitcoin Mainnet data, with 18,086 records, highlighted different patterns 
dominated by categories like "sanctioned" and "cex," reflecting the distinct 

usage trends and regulatory concerns prevalent in Bitcoin transactions. Smaller 
chains, such as the BNB Chain, Avalanche C-Chain, and Polygon Mainnet, 
demonstrated varied itemsets, with liquid staking and NFT categories often 

appearing, suggesting unique user behavior compared to larger networks. 

Following segmentation, the comparison of association rules across chains 

identified both unique and shared patterns. Ethereum Mainnet generated five 
unique rules with high confidence, including the frequent co-occurrence of "cex" 

and "exchange" categories, indicative of robust exchange activity. Bitcoin 
Mainnet revealed two association rules, with notable links between "ransom" 
and "scam," suggesting potential security risks. Conversely, no significant rules 

were generated for BNB Chain, Avalanche C-Chain, and Polygon Mainnet, 
possibly due to limited data or lower transaction volumes. Across all chains, a 

total of seven unique rules were identified, with no rules shared by all chains, 
underscoring the variability in user behavior and interactions across different 
blockchain networks. The identification of chain-specific rules provided insights 

into how user activity and category co-occurrences vary, driven by the 
underlying characteristics of each network. 

Source-Based Analysis 

The source-based analysis segmented data according to the origin of the data 
classification—specifically "ground_truth," "external," and "heuristic" sources. 

Each source was analyzed separately to assess its impact on category 
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associations and frequent itemsets. For instance, the "ground_truth" segment, 

with 62,389 records, prominently featured categories like "smart_contract" and 
"liquid_staking." The "external" source segment, comprising 17,801 records, 

displayed frequent occurrences of "cex" and "wallet," reflecting the diversity of 
source-based classification criteria. Lastly, the "heuristic" segment revealed 

frequent itemsets dominated by "exchange" and "cex" categories, highlighting 
its focus on identifying transactional behaviors often associated with exchanges 
and centralized entities. 

Analyzing the association rules generated across different sources highlighted 
potential biases introduced by source-specific classification criteria. For 

example, rules derived from "ground_truth" sources showed a strong emphasis 
on interactions involving "smart_contract," while "external" sources focused 
more on categories such as "cex" and "honeypot." Only one unique rule was 

identified for "heuristic" sources, indicating possible conservatism in rule 
generation or limited data diversity. No association rules were shared across all 

sources, demonstrating distinct classification perspectives. To detect potential 
biases, specific analyses were conducted to track how often certain categories 
appeared across different sources. For example, the "exchange" category 

showed no consistent association across sources, emphasizing variations in 
how each source captures and interprets data. Such findings highlighted the 

importance of understanding source-driven biases when analyzing and 
interpreting blockchain data patterns. 

Result and Discussion 

Frequent Category Patterns 

The analysis revealed several frequent itemsets that offer insights into common 
blockchain address category co-occurrences. Figure 2 lists the top 10 frequent 

itemsets discovered using the FP-Growth algorithm, with the "smart_contract" 
category emerging as the most prevalent itemset, appearing in 26.88% of 
transactions. Other highly frequent categories included "exchange" with a 

support value of 18.35% and "liquid_staking" at 14.96%, reflecting their 
prominence within blockchain activities. Combinations such as "cex" and 

"exchange" also exhibited notable frequency, indicating a strong association 
between centralized exchanges and other transactional categories. This 
prevalence highlights the central role of smart contracts and exchanges in 

shaping blockchain interactions and user behaviors. 

To further illustrate these patterns, Figure 2 presents a heatmap visualizing the 

co-occurrence of the top categories, emphasizing the most significant pairings, 
such as "cex" and "exchange."  
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Figure 2 Co-occurrence Heatmap of Top 20 Categories 

Figure 3 displays the top 15 most frequent categories among blockchain 
address classifications in the dataset. The "smart_contract" category appears 

as the most prominent, with a count exceeding 25,000, indicating that a 
significant portion of addresses in the dataset are associated with smart contract 

functions. This is followed by "exchange" and "liquid_staking" categories, each 
with high counts, suggesting substantial blockchain activity related to currency 
exchange platforms and liquid staking operations. The "cex" and "sanctioned" 

categories also feature prominently, highlighting a substantial presence of 
centralized exchanges and sanctioned addresses. Less frequent categories 

include "wallet," "nft," and "honeypot," each with moderate representation, likely 
reflecting diverse uses of blockchain for individual wallets, non-fungible tokens, 
and certain security traps (honeypots). Lower on the frequency scale are 

categories such as "proxy," "no_kyc," "gambling," and "payments," which exhibit 
specific but less prevalent blockchain activities. The least common categories 

in the top 15, such as "scam," "deprecated," and "ransom," represent more 
niche or illicit activities within the blockchain space. This distribution highlights 
the dominance of financial and smart contract-related applications on 

blockchain platforms, with various other categories representing a spectrum of 
additional functionalities and risks. 
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Figure 3 Top 15 Most Frequent Categories 

Association Rules 

The analysis of association rules derived from the frequent itemsets focused on 

identifying significant patterns based on metrics such as support, confidence, 
and lift. A total of two association rules met the minimum confidence threshold 
of 20%. Table 2 displays the top rules, including a notable rule where the 

antecedent "cex" leads to the consequent "exchange" with a support of 0.03044, 
a confidence of 23.48%, and a lift value of 1.28. This rule suggests a moderately 

strong relationship between centralized exchanges and transactional behaviors 
in the dataset, indicating that addresses categorized under "cex" frequently 
engage in exchange-related activities. 

The second significant rule highlighted the association between "nft" and 
"smart_contract," reflecting a lower lift value of 0.92 but indicating the frequent 

use of smart contracts in NFT-related transactions. The limited number of highly 
significant rules underscores the complexity and specificity of blockchain 

address interactions. The relatively low number of association rules suggests 
that while some category patterns are prominent, there is still substantial 
diversity in how addresses operate across the blockchain networks. 

The association between "cex" and "exchange" categories suggests that 
centralized exchanges play a critical role in facilitating liquidity and asset 

transfers within blockchain networks. This finding aligns with the well-known 
dominance of centralized exchanges in crypto market operations. The moderate 
lift value for this rule implies that while the association is notable, other 

transactional categories may also interact with exchanges, underscoring the 
interconnected nature of blockchain ecosystems. 

The rule linking "nft" and "smart_contract" indicates the strong reliance of NFT 
transactions on smart contract functionality. This finding reflects the widespread 
use of smart contracts to govern the minting, transfer, and ownership of NFTs, 

providing automation and security in NFT markets. The relatively lower lift for 
this rule, however, highlights the prevalence of smart contracts beyond NFT 

transactions, suggesting their utility in a wide range of blockchain applications. 
Together, these insights reveal critical aspects of blockchain address behavior, 
emphasizing the interconnected roles of major categories and providing a 

foundation for further analysis and application development. 
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Cross-Chain Association Patterns 

The cross-chain analysis focused on comparing frequent itemsets and 
association rules across various blockchain networks to uncover similarities and 
differences in address behaviors. In Ethereum Mainnet, the most common 

itemset, "smart_contract," appeared in 42.35% of transactions, demonstrating 
its dominant role within this chain. Similarly, "exchange" and "cex" were 

prominent with supports of 28.91% and 12.22%, respectively, often co-
occurring, as seen in the "cex, exchange" pair with a support of 4.80%. 

Conversely, Bitcoin Mainnet displayed a markedly different pattern. 
"Sanctioned" was the leading category, found in 58.10% of the transactions, 
followed by "cex" at 28.79%, while categories like "ransom" and "scam" 

exhibited high co-occurrence, reflecting Bitcoin’s unique risk-associated profile. 
BNB Chain and Avalanche C-Chain revealed fewer frequent itemsets, with BNB 

Chain dominated by "liquid_staking" (83.20% support), suggesting 
concentrated activity in staking operations. 

Figures 3 illustrate the observed patterns. Figure 3’s bar charts emphasize the 

varying prevalence of top categories across chains, while Figure 4’s network 
graphs highlight unique and common associations within each blockchain. 

Notably, Ethereum displayed a rich array of interconnected categories, whereas 
Bitcoin’s graph underscored risk-centric clusters like "ransom" and "scam." This 
variation in associations can be attributed to the distinct purposes, user bases, 

and regulatory landscapes governing each blockchain. For instance, 
Ethereum’s diverse decentralized application (DApp) ecosystem fosters 

complex associations, while Bitcoin’s focus on financial transfers often leads to 
specific risk-related interactions. 

Source-Based Influence on Associations 

To assess the influence of data sources on category associations, the dataset 
was segmented by ground_truth, external, and heuristic data sources. 
Ground_truth data exhibited high prevalence of "smart_contract" (42.99%) and 

"liquid_staking" (23.97%) categories, suggesting a focus on verified and 
decentralized applications. The most significant association rule derived here 

linked "dex" and "liquid_staking" with high confidence (85.89%), reflecting the 
natural pairing of decentralized finance (DeFi) activities. In contrast, external 

data sources prominently featured "cex" (37.03%) and "wallet" (23.11%), 
indicating a strong focus on custodial services and general user interactions, 
while rules centered around "ransom" and "scam" indicated potential threat 

monitoring in broader datasets. Heuristic data displayed a dominance of 
"exchange" (92.18%), emphasizing behavior-based inferences. 

Figure 5 presents bar charts comparing category frequencies across data 
sources, showing how certain categories, such as "honeypot" and "scam," 
fluctuate depending on the source’s scope and methodology. The analysis 

revealed potential biases introduced by differing data sources. For example, 
ground_truth data provided a more comprehensive view of verified DApp 

activity, while heuristic data leaned heavily on exchange patterns due to 
behavioral clustering. These biases underscore the need to contextualize 
category prevalence and associations when developing security measures or 

user behavior models. Identifying these discrepancies is critical for accurate 
blockchain analytics and for ensuring that insights reflect true network dynamics 

rather than artifacts of data collection methodologies. 
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Implications of Findings 

The patterns discovered through the FP-Growth association mining algorithm 
offer valuable practical applications in the realm of blockchain analytics. One 
key application is the enhancement of classification models. The frequent co-

occurrence patterns among blockchain address categories, such as "cex" and 
"exchange," provide robust features that improve the accuracy of model 

predictions by capturing complex transactional relationships within the 
blockchain network. These patterns also play a crucial role in anomaly 

detection, where deviations from established co-occurrence norms can signal 
potentially fraudulent or suspicious activities. For instance, the frequent pairing 
of "ransom" and "scam" in Bitcoin transactions highlights areas that warrant 

closer scrutiny, aiding in the proactive identification of illicit behaviors. Moreover, 
security measures can be reinforced by leveraging these insights to develop 

dynamic monitoring systems that detect unusual category interactions indicative 
of emerging threats. 

From a theoretical perspective, this study contributes to the broader 

understanding of blockchain address behaviors and ecosystem dynamics. The 
identification of recurring associations between categories like "smart_contract" 

and "nft" within Ethereum sheds light on dominant user activities and 
transactional flows. Such insights deepen our comprehension of how different 
categories interact, reflect market trends, and evolve in decentralized 

ecosystems. This enriched understanding allows researchers and practitioners 
to develop more sophisticated models of blockchain activity, ultimately fostering 

innovations in decentralized finance (DeFi), decentralized applications (DApps), 
and blockchain governance. 

Limitations 

Despite the valuable insights gained, this study faced several limitations, 
particularly with respect to data constraints. The analysis relied on data from 
multiple sources, including ground_truth, external, and heuristic data, each of 

which may introduce biases in category representation. For instance, heuristic 
data tends to emphasize behavior-based inferences, potentially skewing results 

towards frequently monitored behaviors, such as exchange activity. Similarly, 
ground_truth data often centers around verified applications, which may limit 

the generalizability of findings to broader, less regulated environments. In 
addition, the uneven representation of some categories across data sources 
could influence the prevalence and strength of discovered associations, leading 

to a potential underrepresentation of niche or less-monitored activities. 

Methodological limitations inherent to the FP-Growth algorithm and association 

rule mining must also be acknowledged. While FP-Growth excels at identifying 
frequent patterns with minimal computational overhead, it can struggle with 
complex, highly interdependent datasets where nuanced, low-support 

interactions are significant. The reliance on fixed support and confidence 
thresholds may lead to the exclusion of potentially meaningful associations that 

do not meet these criteria. Furthermore, association rules often capture linear 
relationships, which may oversimplify the multifaceted behaviors present in 
blockchain transactions. Future research could explore hybrid models that 

integrate other data mining approaches, such as clustering and sequence 
analysis, to overcome these limitations and gain a more comprehensive view of 

blockchain interactions. 
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Conclusion 

This research successfully uncovered key patterns and associations among 
blockchain address categories using the FP-Growth association mining 
algorithm. Prominent frequent itemsets, such as "smart_contract" and 

"exchange," demonstrated significant co-occurrence, indicating strong 
interactions within decentralized applications and financial services. The cross-

chain analysis revealed notable variations across blockchain networks, with 
Ethereum and Bitcoin showcasing unique category distributions and 
associations. Ethereum's data was dominated by smart contracts and liquid 

staking, whereas Bitcoin highlighted categories such as sanctioned addresses 
and scam activities. Source-based analyses provided further insights, 

demonstrating how different data sources, including ground_truth, heuristic, and 
external datasets, influence category associations, sometimes introducing 
biases that shaped observed co-occurrence patterns. 

The findings contribute substantially to the understanding of blockchain address 
categorization and association mining. This research bridges a critical gap by 

revealing how co-occurrence patterns differ across chains and data sources, 
enriching the collective knowledge of blockchain transaction behaviors. From a 
practical standpoint, the identified patterns offer avenues to improve 

classification models used in blockchain analytics, refine anomaly detection 
mechanisms, and bolster security measures against illicit activities. By 

analyzing category interactions, this study lays the groundwork for more 
targeted monitoring of blockchain ecosystems, thereby enhancing network 

security and operational efficiency within decentralized environments. 

Future research can extend this study by incorporating temporal data to explore 
how category associations evolve over time, which could reveal dynamic shifts 

in blockchain usage and trends. Expanding the analysis to include additional 
blockchain networks, such as emerging chains with unique structures, may 

provide broader perspectives on category interactions. Integrating external 
datasets, such as regulatory databases or market trend data, could further 
enrich the analysis and provide a more holistic understanding of blockchain 

activities. Additionally, exploring alternative algorithms, such as hybrid 
approaches that combine association mining with clustering or graph-based 

methods, may enhance the detection of more complex and nuanced patterns 
within large-scale blockchain data. 

Understanding category co-occurrences within blockchain data is crucial for 

developing robust insights into decentralized network behaviors and 
applications. This research highlights the potential of association mining 

techniques to uncover meaningful patterns that can inform decision-making, 
security protocols, and analytics frameworks. Continued exploration of these 
patterns is essential as blockchain ecosystems grow in complexity, providing a 

foundation for innovations that improve transparency, security, and trust in 
decentralized systems. 
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