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ABSTRACT 

This study employs clustering analysis to evaluate the efficiency of GPUs used in 

cryptocurrency mining, categorizing them into distinct groups based on computational 

output and power consumption. Using K-Means clustering, GPUs were grouped into 

three clusters: low-efficiency, moderate-efficiency, and high-efficiency. High-

efficiency GPUs demonstrated superior hash rates (e.g., 104.79 Mh/s for AbelHash 

and 218.35 Mh/s for Autolykos2) despite higher power consumption, making them 

ideal for high-performance mining operations. Conversely, low-efficiency GPUs 

exhibited lower computational output and modest energy use, highlighting 

opportunities for hardware upgrades or repurposing. Visualization techniques, 

including scatter plots and pair plots, provided clear distinctions between clusters, 

while a silhouette score of 0.35 indicated moderate cluster separation, suggesting 

areas for further refinement. The findings offer actionable insights for optimizing 

hardware selection, reducing operational costs, and improving energy efficiency in 

mining operations. Additionally, this study underscores the importance of 

sustainability in cryptocurrency mining and provides a foundation for future research, 

including the integration of additional performance metrics, exploration of alternative 

clustering algorithms, and development of energy-efficient mining practices. These 

insights contribute to the broader goal of fostering a more sustainable and data-driven 

approach to cryptocurrency mining. 

Keywords GPU Efficiency, Cryptocurrency Mining, K-Means Clustering, Energy 

Consumption, Computational Output, Hardware Optimization 

INTRODUCTION 

Cryptocurrency mining is a critical process that underpins the functionality of 
blockchain networks, driving the validation of transactions and the generation 

of new coins. This intricate process involves the solving of complex 
mathematical problems, necessitating substantial computational power and 
robust energy resources. Mining operations predominantly rely on specialized 

hardware, such as Application-Specific Integrated Circuits (ASICs) and 
Graphics Processing Units (GPUs), which are pivotal in determining the 

operational efficiency of mining endeavors [1], [2]. The selection of mining 
technology critically influences outcomes, dictating hash rates and sculpting 

energy consumption profiles [1], [3]. 

Driven by consensus mechanisms, mining activity thrives within frameworks 
such as Proof of Work (PoW). Here, miners engage in a computational melee, 

vying to be the first to solve cryptographic puzzles—a conquest rewarded by 
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cryptocurrency [4], [5]. This model not only stabilizes networks, safeguarding 

against double-spending, but also incentivizes vigilance among miners, 
fortifying blockchain integrity. Yet, the high energy demands that accompany 

PoW mining pose environmental dilemmas, especially in terms of the 
gargantuan carbon footprint left by cryptocurrencies like Bitcoin [5], [6]. Therein 

lies a quest for balance, as studies advocate for renewable energy adoption and 
the deployment of energy-efficient hardware to mitigate these impacts [6]. 

The profitability of mining, inhibited or propelled by multifarious factors, dances 

with market conditions, mining difficulty nuances, and operational costs, 
encompassing electricity and equipment maintenance [3], [7]. Price volatility in 

cryptocurrency markets can precipitate speculative bubbles, where the allure of 
soaring prices magnetically draws additional miners, amplifying energy 
consumption and subsequent environmental impact [8]. This volatile interplay 

accentuates the profound connections within market dynamics and mining 
ventures, with shifts in one reverberating through the other. 

As we journey further into this digital realm, the specter of cryptojacking unfurls, 
introducing pronounced cybersecurity threats where malicious actors 
commandeer computational resources for cryptomining without consent [9], 

[10]. Such acts exploit system vulnerabilities, raising intricate ethical and legal 
issues within the cryptocurrency domain [11]. As this landscape continues to 

evolve, the implementation of robust detection and preventive frameworks is 
paramount in safeguarding user interests and preserving network sanctity [12], 
[13]. 

Efficient Graphics Processing Units (GPUs) are indispensable in cryptocurrency 
mining, where maximizing profitability dovetails with the imperative of reducing 

energy consumption. At the core of mining is the brute force of parallel 
processing, a hallmark of GPU capabilities that become especially potent when 
handling the expansive datasets and intricate algorithms characteristic of this 

domain. The ingenuity of GPUs lies in their prowess at executing multiple 
calculations simultaneously, a trait that has underscored their essential role in 

driving higher hash rates and enhancing the probability of transaction validation 
for rewards [14]. 

Yet, beyond performance metrics, the gargantuan energy appetite of mining 
hardware presents a formidable environmental challenge. Optimizing GPU 
performance emerges as a pivotal strategy in curbing this energy voracity. 

Recent research posits that by channeling advancements in GPU technology 
towards energy efficiency, significant reductions in operational costs can be 

achieved, as energy-efficient models amplify computational power while 
tempering electricity consumption [15], [16]. The delicate calculus between 
performance and efficiency is critical; mining operations mired in inefficiencies 

risk eroding the very profitability they aspire to bolster through exorbitant 
electricity expenses [17]. 

The stakes are further compounded by the intricate design and architecture of 
GPUs, which underpin their utility in mining. Optimal GPU performance hinges 
on the meticulous management of memory resources and the strategic 

allocation of tasks to minimize latency and drive throughput [18]. This domain 
necessitates a nuanced comprehension of hardware-software synergies and 

the deployment of tailor-made algorithms that harness the architectural 
advantages of GPUs in cryptocurrency mining [19]. Specific algorithms can be 
precisely engineered to exploit these capabilities, thereby accelerating 
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computational processes and enhancing efficiency [20]. 

Concomitant with hardware innovation, software enhancements hold equal 
weight in the quest for efficiency. Methods such as overclocking and 

undervolting offer pathways to optimize performance while balancing energy 
costs, suggesting that strategic tweaks can yield substantial improvements [1]. 

The profound implications of these optimizations extend into realms of 
profitability and sustainability, addressing increasingly vocal environmental 
concerns tethered to cryptocurrency mining operations [16]. 

The objective of this study transcends mere examination—it ventures into the 
analytical realm by employing K-Means clustering to unravel GPU efficiency 

through performance metrics across varied mining algorithms. This endeavor is 
pivotal for delineating optimal configurations and strategies that could amplify 
the performance of GPUs in the inherently resource-intensive milieu of 

cryptocurrency mining. 

K-Means clustering, lauded for its adeptness at organizing data into distinct 

groups based on feature likeness, serves as the methodological backbone of 
this analysis. Within the context of GPU efficiency, the deployment of K-Means 
offers an organized lens through which to examine diverse performance 

metrics, such as hash rates and energy consumption, alongside processing 
times linked to disparate mining algorithms research [21], [22]. Through 

methodical clustering, this study seeks to extract patterns that illuminate which 
configurations parade the optimal performance, subsequently serving as a 
strategic guide for miners aiming to fine-tune their operations. 

The criticality of GPU efficiency in the mining landscape is accentuated by its 
dual impact on profitability and energy usage, the latter a pressing issue given 

the ecological footprint of cryptocurrency mining [16]. This study leans on a 
robust corpus of literature surrounding GPU performance and clustering 
methodologies, aspiring to construct a cogent framework for evaluating GPU 

efficiency in mining scenarios. Prior inquiries have showcased that GPU-
accelerated K-Means implementations notably outperform traditional CPU-

driven approaches concerning computational speed and overall efficiency [23], 
[24]. 

Furthermore, the study delves into the ramifications that various mining 
algorithms impose on GPU efficacy. The interplay between algorithmic 
demands and GPU architectural nuances can lead to divergent efficiency 

profiles [25], [26]. By leveraging K-Means clustering, this research methodically 
dissects these discrepancies, offering insights to miners on selecting algorithms 

that best resonate with their hardware configurations. 

Equally compelling is the exploration of parallelization techniques and their 
bearing on GPU efficiency. Studies contend that optimizing K-Means clustering 

through parallel applications yields considerable performance enhancements, 
thereby asserting its relevance as a technique for scrutinizing GPU efficiency 

within the mining domain [27]. The insights gleaned from this investigation might 
inform the crafting of best practice protocols for miners, aiming to bolster 
operational efficiency and mitigate energy expenditures. 

In essence, the study is steadfast in its pursuit to analyze GPU efficiency via K-
Means clustering across multiple mining algorithms. It endeavours to yield 

profound insights into GPU configuration optimization and the discernment of 
suitable mining algorithms, charting a course toward more sustainable and 
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lucratively successful mining ventures. 

Literature Review  

Existing Studies on Mining Efficiency 

Previous research has delved deeply into GPU performance metrics within the 

realm of cryptocurrency mining, revealing a spectrum of insights yet stopping 
short of embracing clustering-based methodologies for efficiency analysis. This 
oversight delineates a fertile ground for innovation, urging a reevaluation of how 

GPU performance can be optimized across various mining algorithms. 

Jiang et al. stand as a cornerstone in this scholarly domain, mapping the 

substantial energy consumption tethered to Bitcoin mining and the attendant 
sustainability dilemmas [15]. Despite the pivotal insights into energy demand 
dynamics, their inquiry does not traverse the terrain of GPU performance 

efficiency via clustering techniques. In parallel, Zadé et al. navigate the power 
demands intrinsic to blockchains, focusing acutely on mining machine efficiency 

through historical lens—yet they omit the clustering frameworks that might 
unearth nuanced performance subtleties hidden within mining algorithms [17]. 

A different perspective emerges in the work of Sapra and Shaikh, who spotlight 

governmental regulation as a catalyst for energy-efficient mining practices [28]. 
Their discourse on energy stewardship subtly weaves the narrative of mining's 

ecological impact without harnessing clustering methods that hold potential for 
scrutinizing GPU efficiency. Aligning in thematic concerns, Zheng et al. 
elucidate the synergy between cryptocurrency transactions and electricity 

usage, tracing environmental ramifications [29]. Yet again, the absence of 
clustering-based explorations leaves a gap in translating these insights into 

actionable GPU performance strategies. 

In contrast, Shuaib et al. chart a path centered on optimizing GPU mining 

through techniques like overclocking and undervolting, probing avenues to 
bolster profitability and energy savings [1]. While commendable, this discourse 
doesn't employ clustering to systematically appraise the efficiency of varying 

mining algorithms. Wilson's excavation into GPU pricing vis-à-vis 
cryptocurrency returns casts light on economic influences but similarly omits a 

clustering framework that might categorize and elevate performance metrics 
into actionable tiers [30]. 

The clear absence of clustering-based efficiency scrutiny is further underscored 

by Dzyuba et al., who attend to electricity cost management in mining but 
overlook clustering's capability to unearth optimal GPU configurations [31]. 

Mashuri's proposal of a decision support system for mining machine selection, 
while pragmatic, also skirts the potential of clustering techniques to illuminate 
performance across algorithms [32]. 

K-Means Clustering in Data Mining 

K-Means clustering, a stalwart in the realm of data mining, proficiently partitions 
datasets into K distinct clusters based on similarity. Its essence lies in 

repetitively assigning data points to nearby cluster centroids, subsequently 
recalibrating these centroids to reflect the mean of the assigned points, 

culminating in a clustering solution that minimizes intra-cluster variance [33]. 
This elegance and computational grace render K-Means a favored method, 
especially adept at navigating the vast expanses of large datasets with alacrity. 
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Quick convergence characterizes its operational landscape, rendering it 

efficiently powerful when initial centroids are aptly chosen [34]. 

Yet, it is this facile simplicity that harbors a lurking complexity—the sensitivity to 

the choice of K vastly influences the caliber of clustering outcomes. Determining 
the optimal K has led to the evolution of various evaluative techniques such as 

the silhouette and elbow methods, each scrutinizing facets like compactness 
and separation of clusters [35], [36]. However, amidst its widespread acclaim, 
K-Means is not exempt from limitations. Its predilection for spherical clusters 

and homogeneous variance across clusters can betray it in datasets 
characterized by irregular distributions or divergent densities [37], [38]. In 

pursuit of transcending these confines, scholars have devised adaptations of 
the K-Means algorithm, including alternative distance metrics and ensemble 
methods that bolster clustering resilience [20]. 

The integration of advanced machine learning techniques into K-Means 
epitomizes the evolution of this trusted algorithm. By adopting adaptive feature 

weighting, K-Means now tailors itself to acknowledge the varying significance 
of diverse data attributes, a testament to its burgeoning adaptability [39]. Such 
advancements herald its application across distinct domains, from image 

processing to bioinformatics, highlighting its versatility in extracting substantive 
patterns from complex datasets [40], [41]. 

The K-Means clustering algorithm in data mining seeks to partition datasets into 
K distinct clusters based on the similarity of data points. Its core objective is 
embodied in minimizing the sum of squared distances between data points and 

their corresponding cluster centroids, articulated mathematically as: 

∑ ∑ ||𝑥 − μ𝑖||
2

𝑥∈𝐶𝑖
𝐾
𝑖=1      (1) 

In this eloquent formula, K denotes the cluster number, Ci represents the 
conglomeration of points within cluster i , x signifies an individual data point 

therein, and μ𝑖 captures the centroid of that cluster. The squared Euclidean 

distance ||𝑥 − μ𝑖||
2
 crystallizes the essence of clustering, gauging the cohesion 

of points within their clusters [42]. 

Operationally, K-Means embarks on its clustering journey through a bifurcated 

iterative dance—assignment and update. Initially, it allocates data points to their 
proximal centroids. This is followed by recalibrating the centroids to reflect the 

aggregated mean of assigned points, iterating until assignments stabilize or 
centroids achieve permanence [43]. The swiftness of K-Means, particularly with 
aplomb in handling voluminous datasets, stands as a testament to its formidable 

efficiency, albeit being intriguingly susceptible to the initial centroids' positioning, 
which can precipitate varied clustering transformations [44]. 

Responses to such challenges have spurred innovations like the K-Means++ 
initialization strategy, enhancing the selection of initial centroids and fortifying 
the algorithm against inconsistency [45]. Nonetheless, K-Means’ presumption 

of spherical cluster configuration and homogenous variance remains a caveat, 
particularly when choosing the number of clusters K is uncertain [46]. To combat 

these challenges, alternatives like K-Medoids and density-centric clustering 
variants have emerged, offering flexibility and superior results where K-Means 
may falter [47]. 

Method 



 Journal of Current Research in Blockchain 

 

Khosa and Olanipekun (2025) J. Curr. Res. Blockchain. 

 

124 

 

 

Exploratory Data Analysis (EDA) 

The first step in the methodology involved Exploratory Data Analysis (EDA), a 
crucial process for understanding the dataset's structure, distribution, and 
overall quality. This initial phase is vital for identifying patterns, spotting 

anomalies, and generating hypotheses that could lead to further data 
exploration or modeling. 

To begin, the Pandas library in Python was utilized, a powerful tool for data 
analysis, which facilitated the loading of the dataset from dataset.csv into a 

DataFrame. This structured and flexible format allowed for seamless data 
manipulation and exploration, providing a robust foundation for comprehensive 
analysis. The DataFrame's tabular format is ideal for handling large datasets, 

enabling efficient data processing and transformation. 

One of the first tasks was to obtain a statistical overview of the dataset, achieved 

through the .describe() method in Pandas. This method generated a summary 
of the dataset's distributional properties, providing insights into key measures of 
central tendency such as mean and median, as well as dispersion metrics like 

standard deviation, minimum and maximum values, and interquartile ranges. 
These statistical insights are indispensable for assessing the fundamental 

characteristics of each GPU performance metric. 

Key metrics under consideration included hash rates like AbelHash (Mh/s), 
Autolykos2 (Mh/s), and zkSNARK (Mproof/s), along with their respective power 

consumptions: AbelHashPower, Autolykos2Power (Watt), and zkSNARKPower 
(Watt). These metrics are essential as they directly influence the efficiency and 

performance evaluation of GPUs, crucial for determining the energy efficiency 
and computational power of the graphics processing units under examination. 
Understanding these metrics helps in comparing different GPU models and 

configurations for tasks such as cryptocurrency mining or computational tasks 
requiring high performance. 

To ensure data integrity, missing value assessments were conducted through 
the .isnull().sum() function. This function helped identify any potential gaps in 
the data, ensuring that no entries were missing values, which could affect the 

accuracy of the analysis. Confirming that no imputation was required was a 
critical verification step, assuring those subsequent data analyses were based 

on complete datasets. This enhances the reliability and validity of the analysis, 
providing confidence in the findings and conclusions drawn from the data. 

Furthermore, EDA included visualizations to aid in understanding the data. 
Histograms and box plots were employed to visualize the distributions of key 
metrics, providing a clear graphical representation of data spread and outliers. 

Scatter plots were also used to investigate relationships between different 
metrics, such as hash rates and their corresponding power consumptions, 

offering insights into performance efficiency trends. These visual tools are 
invaluable for making data-driven decisions and guiding further analysis steps. 

Overall, this comprehensive EDA process laid a solid groundwork for more 

advanced analysis and modeling, ensuring that all subsequent steps are 
informed by a thorough understanding of the initial dataset characteristics. 

Data Preprocessing 

Preprocessing the data was imperative to standardize the variables for 
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clustering, a critical step in data analysis to ensure consistent scaling across 

different metrics. Initially, specific features were meticulously curated for 
analysis, encompassing both performance outcomes and associated energy 

costs. These selected features were: AbelHash (Mh/s), Autolykos2 (Mh/s), 
zkSNARK (Mproof/s), along with their relevant power consumption metrics. The 

choice of these features was driven by their relevance in determining the 
efficiency and computational capacity of GPUs, which are pivotal in various 
high-performance tasks such as cryptocurrency mining and scientific 

computations. 

To prepare the data for the clustering process, normalization was employed 

using StandardScaler from the sklearn.preprocessing module. This technique 
transformed each feature to a standard format with a mean of zero and a 
standard deviation of one. This transformation process is not merely a formality 

but a critical step in ensuring that the clustering algorithm treats each feature 
equally, preventing features with larger scales from disproportionately affecting 

the clustering process. This disproportionate influence could skew the results 
and lead to erroneous conclusions about GPU efficiency, which could, in turn, 
impact decision-making processes related to hardware investments and 

operational optimizations. 

The normalization process involves computing the mean and standard deviation 

of each feature and using these statistics to scale the data. By doing so, every 
data point is transformed relative to the entire dataset's mean and variation, 
which enhances the robustness and reliability of the clustering analysis. This 

step is especially imperative when dealing with datasets that combine 
performance metrics and power consumption measures, as these can vary 

significantly in their scales and units of measurement. 

Overall, the preprocessing step forms the backbone of any meaningful data 
analysis, ensuring that the insights drawn from clustering are both accurate and 

actionable. It helps in aligning the data with the assumptions of many machine 
learning models, including clustering algorithms, thereby improving the 

interpretability and validity of the classification results. 

Clustering and Visualization 

The heart of the clustering process was the application of the K-Means 

algorithm. Before determining the K value (number of clusters), the elbow 
method was employed to identify the optimal cluster count. This involved 

plotting the within-cluster sum of squares (WCSS) for cluster numbers ranging 
from 1 to 10. The WCSS metric, indicative of clusters' compactness, was plotted 
using Matplotlib to visualize the 'elbow point'—a sharp transition where adding 

more clusters yields diminishing returns in variance reduction. For this dataset, 
the elbow method suggested that an optimal K value was 3, balancing 

comprehensiveness and parsimony. 

Subsequently, the K-Means clustering algorithm was executed with these 
parameters (`n_clusters=3`, `random_state=42`) to ensure reproducibility. This 

step assigned each GPU configuration to one of three clusters based on 
similarity across the standardized features. Results were appended to the 

DataFrame with a 'Cluster' label, enabling enhanced interpretability of the data. 

The visualization of clustering outcomes was conducted using Seaborn, lending 
vibrant graphical clarity to the data. A scatter plot was crafted to depict the 
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relation between GPU hash rates and power consumption, annotated by cluster, 

using distinct hues to encode membership (e.g., `AbelHash (Mh/s)` vs. 
`AbelHashPower`). This visual representation not only highlighted the 

concentration of efficient configurations within certain clusters but also 
delineated outliers that deviate from cluster norms. Additionally, a 

comprehensive pairplot provided a multidimensional overview of feature 
interrelationships, integrating all selected metrics. This intricate depiction aided 
in recognizing emergent patterns—revealing clusters characterized by high 

computational output with reduced energy input as potentially optimal 
configurations. 

Cluster centroids, extracted and denormalized, were also illustrated, 
symbolizing the 'average' performance within each group. These centroids 
provided tangible benchmarks for comparison among the groups. 

Through this meticulous methodical approach—merging EDA, data 
preprocessing, and clustering—the study surfaced nuanced patterns of GPU 

efficiency. The clarity and precision from the clustering insights equip decision-
makers with data-driven strategies to optimize hardware selections and 
operational parameters, potentially reducing energy consumption and elevating 

mining profits. These findings lay the groundwork for sustainable best practices 
in energy use and configuration strategies in cryptocurrency mining operations. 

Result and Discussion 

Findings of K-Means Clustering 

The application of K-Means clustering on the GPU performance dataset has 
revealed distinct patterns that uncover varying categories of GPU efficiency, 

each characterized by unique performance metrics. Upon analysis, three 
primary clusters emerged, reflective of differing computational capabilities and 

energy consumption profiles, as shown in figure 1. 

 

Figure 1 Clusters Visualization 

Cluster 0, identified as the "Low Efficiency Group," contains GPUs that 

demonstrate relatively low hash rates across key metrics, such as 11.30 Mh/s 
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for `AbelHash` and 57.07 Mh/s for `Autolykos2`. These GPUs also record 

modest power consumption figures, with 27.80 Watts for `AbelHashPower` and 
64.52 Watts for `Autolykos2Power`. The interpretation of this cluster suggests 

that these are likely older GPU models or systems not optimized for high-
performance output, offering less computational power relative to their energy 

input. This group's existence highlights potential inefficiencies that could be 
addressed through technology updates or operational adjustments.  

Cluster 1, described as the "Moderate Efficiency Group," showcases an 

intermediate level of computational power and energy balance. This group 
features GPUs with modest hash rates, including 51.48 Mh/s for `AbelHash` 

and 131.70 Mh/s for `Autolykos2`, coupled with respective power consumption 
rates of 114.56 Watts and 122.82 Watts. They signify a balanced trade-off 
between computational output and energy use, making them viable for 

situations where budgetary constraints or energy considerations are priorities. 
This balance between performance and cost-effectiveness may appeal to 

operations seeking prudent investments in technology that offer reliable yet 
moderate returns. 

The "High Efficiency Group," represented by Cluster 2, signifies top-tier GPU 

configurations optimized for maximum output with high hash rates, recording 
104.79 Mh/s for ̀ AbelHash` and 218.35 Mh/s for ̀ Autolykos2`. Correspondingly, 

these GPUs show higher power consumption values of 233.80 Watts and 
184.40 Watts, respectively, yet their superior performance represents a 
compelling case for high-demand mining operations where the energy costs are 

justified by the substantial computational returns. This group highlights the 
pinnacle of current GPU efficiency in the dataset, providing insights into 

potential hardware benchmarks for advanced mining frameworks. 

Visualization of these results was achieved using scatter plots and pair plots, 
providing a nuanced view of relationships between hash rates and power 

consumption across clusters. The scatter plot, specifically analyzing `AbelHash 
(Mh/s)` against `AbelHashPower`, color-coded by cluster, clearly delineated 

each group’s position within the efficiency spectrum. This visualization 
illuminated the spectrum of performance categories, further corroborated by the 

pair plots showing broader metric interactions, thus delivering an enhanced 
interpretative layer to the raw data. 

The implications of these findings stretch far into operational and strategic 

domains within cryptocurrency mining. Operators looking to optimize resource 
allocation and economic return would do well to invest in high-performance 

GPUs identified in Cluster 2, aligning their hardware choices with operational 
demands for high throughput and energy efficiency. Conversely, GPUs situated 
in the lower efficiency clusters suggest avenues for enhancement, whether 

through system upgrades or efficiency-focused strategies such as better cooling 
solutions or software optimizations that could elevate their performance to better 

align with industry needs. 

Moreover, the silhouette score of 0.35, reflecting moderate cluster separation, 
suggests that while distinct efficiency categories exist, some overlaps point to 

potential areas for further investigation. This score encourages a nuanced 
review of clustering boundaries to refine understanding and identify subtle 

performance differentiators within the clusters. Altogether, these analytical 
insights inform strategic decision-making regarding technology deployment and 
energy management in mining operations, ultimately guiding firms towards 
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more sustainable and profitable practices. 

Discussion 

The findings from the clustering analysis of GPU performance metrics have 
significant implications for cryptocurrency mining operations, hardware 

procurement strategies, and energy efficiency optimization. By categorizing 
GPUs into distinct clusters based on their computational output and power 

consumption, this study provides actionable insights that can guide decision-
making processes in the mining industry. Below, we discuss the key implications 

of these findings in detail. 

The identification of high-efficiency GPUs (Cluster 2) offers a clear pathway for 
mining operators to prioritize hardware investments. These GPUs, 

characterized by high hash rates (e.g., 104.79 Mh/s for `AbelHash` and 218.35 
Mh/s for `Autolykos2`) and relatively high-power consumption (233.80 Watts 

and 184.40 Watts, respectively), are ideal for operations requiring maximum 
computational throughput. By focusing on GPUs within this cluster, mining 
operators can maximize their return on investment (ROI) by achieving higher 

mining yields while maintaining energy costs at manageable levels. Conversely, 
GPUs in the low-efficiency cluster (Cluster 0) should be phased out or 

repurposed for less demanding tasks, as their lower hash rates and modest 
power consumption make them less suitable for high-performance mining. 

The clustering results highlight the importance of balancing computational 

output with energy consumption. GPUs in the moderate-efficiency cluster 
(Cluster 1) represent a middle ground, offering a balance between performance 

and energy use. For mining operations with limited energy budgets or those 
operating in regions with high electricity costs, these GPUs may provide a cost-
effective solution. Additionally, the findings suggest that energy efficiency can 

be further improved by optimizing the configurations of GPUs in the low-
efficiency cluster. For example, implementing advanced cooling systems, 

undervolting, or using energy-efficient mining algorithms could help reduce 
power consumption without significantly compromising performance. 

The insights derived from the clustering analysis can directly contribute to 

reducing operational costs in mining operations. By identifying and deploying 
GPUs from the high-efficiency cluster, operators can minimize the number of 

GPUs required to achieve a given level of computational output, thereby 
reducing both hardware acquisition and maintenance costs. Furthermore, the 

ability to categorize GPUs based on their efficiency allows operators to allocate 
resources more effectively, ensuring that high-performance GPUs are utilized 
for critical tasks while lower-performance GPUs are reserved for less intensive 

operations. 

The findings also have important implications for sustainability in cryptocurrency 

mining. The high energy consumption associated with mining operations has 
raised concerns about their environmental impact. By prioritizing GPUs in the 
high-efficiency cluster, mining operations can reduce their overall energy 

consumption per unit of computational output, thereby lowering their carbon 
footprint. Additionally, the insights gained from this study can inform the 

development of more energy-efficient mining algorithms and hardware designs, 
contributing to the broader goal of sustainable mining practices. 

The clustering results provide a foundation for future research aimed at further 
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optimizing GPU performance and energy efficiency. For instance, the moderate 

silhouette score of 0.35 indicates that while the clusters are distinct, there is 
room for refinement in the clustering process. Future studies could explore 

alternative clustering algorithms, such as DBSCAN or hierarchical clustering, to 
achieve more precise groupings. Additionally, the integration of additional 

features, such as thermal performance or cost per unit, could enhance the 
clustering model's ability to identify optimal GPU configurations. 

The findings from this study can serve as a benchmark for the cryptocurrency 

mining industry, providing a standardized framework for evaluating GPU 
performance and efficiency. Mining operators can use these insights to 

establish best practices for hardware selection, energy management, and 
operational optimization. By adopting a data-driven approach to decision-
making, the industry can move towards more efficient and sustainable mining 

practices, ultimately benefiting both operators and the environment. 

Conclusion 

The clustering analysis of GPU performance metrics has yielded valuable 

insights into the efficiency and operational characteristics of GPUs used in 
cryptocurrency mining. By categorizing GPUs into three distinct clusters—low-
efficiency, moderate-efficiency, and high-efficiency—we have identified clear 

patterns in computational output and energy consumption. These findings 
provide a robust framework for optimizing mining operations, enabling operators 

to make data-driven decisions that enhance performance, reduce costs, and 
promote sustainability. 

The high-efficiency cluster (Cluster 2) stands out as the most promising group, 
with GPUs delivering exceptional hash rates (e.g., 104.79 Mh/s for AbelHash 
and 218.35 Mh/s for Autolykos2) despite their higher power consumption. These 

GPUs are ideal for high-performance mining operations, offering the best return 
on investment and aligning with the industry's need for maximizing 

computational throughput. Conversely, the low-efficiency cluster (Cluster 0) 
highlights the limitations of older or less optimized hardware, suggesting 
opportunities for upgrades or repurposing to improve overall efficiency. 

The moderate-efficiency cluster (Cluster 1) represents a balanced option for 
operations with constrained energy budgets or those seeking cost-effective 

solutions. These GPUs provide a viable middle ground, offering reasonable 
computational output without excessive energy consumption. This cluster 
underscores the importance of tailoring hardware choices to specific operational 

needs and resource availability. 

The visualization of clustering outcomes, through scatter plots and pair plots, 

has further enhanced the interpretability of the results, enabling operators to 
clearly distinguish between efficiency categories and identify outliers or 
anomalies. The silhouette score of 0.35, while indicating moderate cluster 

separation, also points to areas for further refinement and exploration, such as 
the integration of additional performance metrics or the application of alternative 

clustering algorithms. 

From a broader perspective, these findings have significant implications for the 
cryptocurrency mining industry. By prioritizing high-efficiency GPUs, operators 

can reduce operational costs, minimize energy consumption, and lower their 
environmental impact. The insights gained from this study also pave the way for 
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future research, encouraging the development of more energy-efficient 

hardware and mining algorithms. Furthermore, the clustering framework 
established here can serve as a benchmark for industry best practices, fostering 

a more sustainable and data-driven approach to mining operations. 

The findings from this study open several promising avenues for future research 

that could deepen our understanding of GPU efficiency and its implications for 
cryptocurrency mining. One key area for exploration is the integration of 
additional performance metrics, such as thermal performance, cost per unit, and 

hardware lifespan, into the clustering model. This would provide a more 
comprehensive evaluation of GPU efficiency, accounting for factors beyond 

computational output and power consumption. Additionally, future studies could 
investigate alternative clustering algorithms, such as DBSCAN, hierarchical 
clustering, or Gaussian Mixture Models (GMM), which may offer more precise 

or nuanced groupings, particularly in datasets with overlapping clusters or 
varying densities. Another important direction is the development of dynamic 

clustering approaches that adapt to changes in GPU performance over time, 
such as hardware degradation or software updates, enabling real-time insights 
into efficiency trends. Research into energy-efficient mining algorithms, 

including proof-of-stake (PoS) or other low-energy consensus mechanisms, 
could also significantly enhance the sustainability of mining operations. 

Furthermore, the impact of environmental factors, such as temperature, 
humidity, and cooling systems, on GPU performance warrants further 
investigation, as these variables can influence efficiency and should be 

incorporated into clustering models for more accurate recommendations. A 
detailed analysis of the economic and environmental impact of adopting high-

efficiency GPUs could provide valuable insights for policymakers and industry 
stakeholders, including cost-benefit analyses, carbon footprint assessments, 
and lifecycle evaluations of hardware. Additionally, the application of machine 

learning for predictive maintenance could help mining operators proactively 
address hardware failures or performance degradation, reducing downtime and 

extending the lifespan of GPUs. Finally, expanding the dataset to include GPUs 
from different manufacturers or platforms would enable cross-platform 

comparisons of efficiency and performance, offering a broader perspective on 
optimal hardware choices for mining operations. These future research 
directions hold the potential to refine the insights from this study and drive the 

cryptocurrency mining industry toward greater efficiency, sustainability, and 
innovation. 
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