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ABSTRACT 

This study employs the Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) model to analyze the volatility dynamics of Hedera Hashgraph, a prominent 

cryptocurrency. Using a dataset of 1,901 daily price observations, we investigate the 

presence of volatility clustering and the persistence of market shocks, which are 

hallmarks of financial markets. The GARCH(1,1) model demonstrates robust 

performance, with a Log-Likelihood of 2927.50, AIC of -5846.99, and BIC of -5824.79, 

confirming its suitability for volatility estimation. Key findings reveal significant volatility 

clustering, with alpha (α = 0.20) and beta (β = 0.78) indicating moderate sensitivity to 

recent shocks and high persistence of volatility, respectively. Visualizations of 

conditional volatility and historical price data highlight the inverse relationship 

between price stability and volatility, with high volatility periods accounting for 33% of 

the dataset. These insights underscore the importance of real-time volatility 

monitoring for risk management and investment strategies. The study concludes by 

suggesting future research directions, including the integration of GARCH models 

with machine learning techniques and the exploration of external factors influencing 

cryptocurrency price dynamics. 

Keywords Hedera Hashgraph, GARCH Model, Volatility Clustering, Cryptocurrency, 

Risk Management, Conditional Volatility 

INTRODUCTION 

The rising importance of cryptocurrency analysis is underscored by its 
increasing integration into financial markets and the growing recognition of 
cryptocurrencies as viable investment instruments. As digital currencies gain 

traction, the imperative for robust analytical frameworks to assess performance, 
risks, and potential returns intensifies. This trend is reflected in numerous 

studies that highlight the multifaceted role of cryptocurrencies in modern 
finance. One significant aspect of analysis is evaluating the impact of 

cryptocurrencies on traditional financial instruments and investment portfolios. 
Research suggests that cryptocurrencies, particularly Bitcoin, have emerged as 
leading asset classes, influencing the risk-return profiles of diversified portfolios. 

Incorporating these digital assets can enhance portfolio performance by 
providing diversification benefits, thereby reducing overall risk [1], [2], [3]. 

Furthermore, the inherent volatility in cryptocurrency markets necessitates 
sophisticated analytical methods to predict price movements and assess 
investment feasibility [4]. The application of machine learning models like 

XGBoost and LightGBM has been explored to improve prediction accuracy, 
underscoring the importance of data-driven approaches [4]. 
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Additionally, as the regulatory landscape evolves, the need for comprehensive 

risk assessments heightens. With institutional investors entering the market, 
understanding associated risks becomes critical. Research emphasizes the 

necessity for firms to enhance risk disclosures related to cryptocurrency 
holdings, significantly affecting corporate performance and stakeholder trust [5], 

[6]. The dynamic nature of cryptocurrencies, marked by rapid fluctuations and 
market contagion, complicates risk management strategies [7]. Effective 
analysis not only aids investors in informed decision-making but also assists 

policymakers in formulating regulatory frameworks to safeguard market integrity 
[8]. 

Moreover, the surge in public interest has led to increased sentiment analysis, 
particularly through social media. Understanding public sentiment provides 
insights into market trends and investor behavior [9], [10]. This aspect, reflecting 

psychological influences on investment, is crucial in a market often driven by 
speculation and social dynamics [11]. Thus, the burgeoning importance of 

cryptocurrency analysis spans traditional investment strategies, rigorous risk 
management, and public sentiment assessment. As cryptocurrencies continue 
to integrate into the financial ecosystem, the demand for comprehensive 

analytical tools will only intensify, highlighting the need for ongoing research 
and development. 

Hedera Hashgraph occupies a distinct position within this landscape, boasting 
an innovative consensus mechanism, high throughput, and energy efficiency. 
Unlike traditional blockchain technologies reliant on proof-of-work (PoW) or 

proof-of-stake (PoS), Hedera utilizes a Directed Acyclic Graph (DAG) structure, 
combined with a Hashgraph consensus algorithm. This allows significantly 

higher transaction speeds and lower latency, with capabilities of processing up 
to 250,000 transactions per second (TPS) [12], [13]. Such performance metrics 
render Hedera scalable for diverse applications, from financial services to 

supply chain management. 

One standout feature is its energy efficiency, eschewing resource-intensive 

mining typical of PoW systems, making it a sustainable option in the crypto 
space research [12]. With environmental concerns around energy consumption 

mounting, Hedera's consensus mechanism—which employs a gossip protocol 
and virtual voting—confirms transactions quickly and securely without extensive 
computational resources [14]. This efficiency reduces operational costs, making 

Hedera attractive for enterprises implementing distributed ledger technology 
(DLT). 

Hedera Hashgraph's architecture also supports both public and permissioned 
networks, enabling flexible deployment across sectors. This hybrid capability 
allows organizations to tailor platform use to specific regulatory and operational 

needs [15]. The integration capability coupled with a secure and decentralized 
framework is a significant advantage that sets Hedera apart. 

In terms of governance, Hedera is guided by the Hedera Governing Council, 
composed of leading organizations from varied industries, ensuring network 
integrity and trust research [14], [16]. This structured oversight facilitates 

institutional investment and broader adoption, distinguishing Hedera from other 
decentralized platforms potentially lacking rigorous governance. 

The research focus on analyzing price volatility in cryptocurrencies has become 
a beacon for financial researchers, driven by the distinctive instability and rapid 
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fluctuations inherent in these digital assets. As cryptocurrencies increasingly 

capture the attention of investors and analysts, dissecting the elements that fuel 
price volatility becomes pivotal for crafting effective risk management and 

investment strategies. Data mining techniques have surfaced as formidable 
instruments in this domain, empowering researchers to unveil hidden patterns 

and anticipate future price trends. 

One primary motivation for scrutinizing cryptocurrency volatility lies in its 
profound impact on investor decisions. Studies indicate that price volatility 

maintains a positive correlation with cryptocurrency returns, insinuating that 
heightened volatility may foster greater potential returns for investors [17], [18]. 

This intriguing relationship underscores the necessity of developing robust 
models capable of accurately forecasting volatility, thereby assisting investors 
in making judicious choices regarding their portfolios. For example, the 

deployment of state space models and Kalman filters to forecast volatility amidst 
significant market events, like the COVID-19 pandemic, exemplifies the demand 

for adaptable modeling techniques in such volatile environments [18]. 

Furthermore, the incorporation of machine learning and data mining techniques 
has revolutionized volatility analysis. Researchers have explored algorithms 

such as Long Short-Term Memory (LSTM) networks and Gated Recurrent Units 
(GRU) to predict cryptocurrency prices using historical data and sentiment 

analysis from social media [19], [20]. These sophisticated methodologies permit 
the integration of diverse data sources, bolstering model predictive power and 
delivering more profound insights into market dynamics. The proclivity to 

analyze extensive datasets efficiently proves particularly advantageous in 
cryptocurrency markets, where price movements may be swayed by myriad 

factors, including market sentiment, trading volume, and macroeconomic 
events [21]. 

In addition, the adoption of volatility modeling through Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models has gained 
traction, adept at capturing the time-varying nature of cryptocurrency returns. 

Research demonstrates that GARCH models, along with their iterations like 
EGARCH and TGARCH, aptly account for the asymmetric behavior prevalent 

in cryptocurrency markets [22], [23]. These models elucidate how past price 
shocks impact current volatility, furnishing a template for forecasting future price 
movements. Such analytical revelations are essential for traders and 

institutional investors navigating the complexities of the cryptocurrency realm 
[24], [25]. 

Thus, the analysis of price volatility using data mining techniques emerges as a 
cornerstone within the cryptocurrency domain. The fusion of advanced 
modeling approaches with the exploration of market dynamics and investor 

psyche yields invaluable insights to enhance decision-making processes. As 
the cryptocurrency market continually unfolds, persistent research in this sphere 

is crucial for devising strategies to mitigate risk and seize potential prospects. 

The objective of utilizing Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) models in the realm of price stability analysis, 

particularly amidst the tempestuous seas of cryptocurrency markets, lies in their 
adeptness at capturing and deciphering the time-varying volatility intrinsic to 

these financial assets. GARCH models stand out for their prowess in modeling 
the serial dependence of volatility, a capability essential for researchers aiming 
to understand the ebb and flow of market fluctuations as they transition through 
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epochs of both high and low volatility [26], [27]. 

A cardinal aim of employing GARCH models is the quest for a more intricate 
comprehension of temporal price fluctuations, especially under turbulent market 

conditions. When parsing through historical price data, these models illuminate 
patterns of volatility clustering, a phenomenon where bouts of high volatility 

herald more of the same, and calmer periods echo with tranquility [27], [28]. 
Such patterns are invaluable for investors and risk managers, forewarning them 
of imminent price waves and guiding strategic recalibrations to buffer against 

market caprice. 

Moreover, GARCH models serve as sentinels for assessing the repercussions 

of external shocks on price stability. Research underscores that through the lens 
of GARCH analysis, one can discern how financial markets contort in the wake 
of seismic events, be it economic upheavals or the tremors of regulatory shifts, 

imparting critical insights into the fortitude and adaptability of asset prices amid 
such tremulous times [29], [30]. This analytical vantage is particularly pertinent 

in the mutable cryptocurrency landscape, where prices frequently tremor under 
the sway of news and burgeoning market sentiments. 

The application of GARCH models extends to embracing the asymmetries in 

volatility, a factor crucial for unraveling the differential impacts of salutary and 
adverse market jolts on price stability. By employing their asymmetric 

incarnations, such as the Exponential GARCH (EGARCH) and Threshold 
GARCH (TGARCH), researchers can dissect the disproportionate influence of 
adverse market climes—where tumult breeds more volatility compared to 

halcyon conditions—thus enriching risk management paradigms [27], [30]. This 
nuanced grasp of asymmetric volatility is pivotal for crafting risk mitigation 

strategies tailored to modulate the latent instabilities hovering over asset prices. 

Literature Review  

Previous Studies on Cryptocurrency Analysis 

The analysis of cryptocurrency volatility has emerged as a focal point of 

contemporary financial research, driven by the unique characteristics and 
mercurial fluctuations that define digital currencies. A myriad of studies has 

employed diverse methodologies to dissect and model this volatility, thereby 
enriching a corpus of literature dedicated to unveiling the enigmatic dynamics 
of cryptocurrency markets. 

A seminal study by research [29] employed GARCH models to scrutinize 
Bitcoin's volatility relative to conventional assets like gold and the US dollar. The 

investigation revealed that Bitcoin's returns are markedly influenced by its utility 
as a medium of exchange, exhibiting volatility traits akin to gold, particularly in 
the face of market perturbations. This groundbreaking work laid an essential 

foundation for deeper exploration into cryptocurrency volatility, underscoring the 
necessity for sophisticated modeling techniques to encapsulate the distinct 

behaviors of these assets. 

Building upon Dyhrberg's findings, [31] expanded the horizons of GARCH 
modeling by juxtaposing various GARCH models to gauge Bitcoin's volatility. 

Their research concluded that the AR-CGARCH model offered the optimal fit 
for Bitcoin's price data, underscoring the significance of incorporating long 

memory effects to bolster volatility forecasts. The study accentuated the vital 
role of selecting suitable models to precisely capture cryptocurrency market 
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volatility dynamics. 

In an intriguing pivot towards computational advancements, [21] investigated 
the application of machine learning techniques for forecasting cryptocurrency 

price fluctuations. Their research underscored the efficacy of integrating 
machine learning with traditional financial models to refine predictive accuracy, 

thereby navigating the challenges posed by cryptocurrency volatility. This 
evolution marks a burgeoning trend towards leveraging advanced 
computational methodologies to interpret price movements and volatility within 

the cryptocurrency domain. 

Further exploring volatility intricacies, [32] delved into the return-volatility 

relationship of Bitcoin, particularly during the notorious 2013 price crash. Their 
findings uncover that positive shocks exert a more pronounced influence on 
conditional volatility than negative shocks—a behavior divergent from traditional 

financial assets. This asymmetric response to market jolts highlights the 
intricate complexities of cryptocurrency volatility, necessitating bespoke 

analytical frameworks. 

Moreover, [33] introduced KryptoOracle, a real-time cryptocurrency price 
prediction platform utilizing Twitter sentiment analysis. This study exemplifies 

the seamless integration of social media data into volatility analysis, illustrating 
how public sentiment wields influence over price dynamics in the cryptocurrency 

market. The capability to embed real-time data into volatility models marks a 
significant leap forward in understanding the myriad forces steering price 
fluctuations. 

The prediction of cryptocurrency price movements stands as a pivotal research 
frontier, enchanted by the volatile essence of digital assets and the prospects 

of lucrative returns. An eclectic array of methodologies has been marshaled to 
anticipate price fluctuations, each buoyed by its distinct virtues and constraints. 
Below, we delineate several prevailing methods and their prowess in 

deciphering cryptocurrency price movements. 

Machine Learning Techniques 

Machine learning has burst forth as a formidable vector for cryptocurrency price 

forecasting, lauded for its capacity to sift through vast datasets and unearth 
intricate patterns. Research [19], for example, delved into hybrid Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) models. These models 
bolster accuracy by incorporating social media sentiment analysis, showcasing 

the potency of melding traditional time series insights with sentiment data to 
refine predictive acumen. 

In parallel, [24] juxtaposed GARCH models with Bayesian Stochastic Volatility 

frameworks to parse the volatility across diverse cryptocurrencies. Their 
exploration revealed that the Stochastic Volatility model eclipsed GARCH 

models in forecast precision, especially over extended horizons. This finding 
suggests that whilst GARCH models enjoy ubiquity, alternative approaches may 
yield superior glimpses into price phenomena. 

Time Series Analysis 

Time series analysis persists as an anchor method for cryptocurrency price 

prediction. [34] investigated the dual themes of price delays and market 
efficiency, unveiling significant lags in illiquid, volatile cryptocurrencies. This 
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insight magnifies the pivotal role of liquidity in prediction, illustrating how 

timeless methods can be modulated to reflect market dynamics. 

Furthermore, research by [35] focused explicitly on LSTM models tailored to 

time series analysis of cryptocurrency prices. Their study explored the efficacy 
of LSTM in prefiguring volatile price trends, advocating LSTM's prowess for 

sequential data as particularly apt for this endeavor. 

Sentiment analysis has garnered momentum as a synergistic adjunct to 
cryptocurrency price prediction. [36] illustrated that Twitter sentiment scrutiny 

could adeptly portend price volatility in cryptocurrencies. This methodology taps 
into the symbiotic link between public sentiment and market trajectory, yielding 

a real-time vantage on prospective price shifts. Research [37] reinforced 
sentiment analysis's significance, suggesting that social media trends enact a 
potent influence on cryptocurrency valuations. The efficacy of this approach lies 

in its acute sensitivity to market sentiment, frequently heralding price transitions. 

GARCH models have risen as stalwarts in dissecting and projecting volatility 

within cryptocurrency arenas. Research [22] accentuated asymmetric GARCH's 
instrumental role in accommodating cryptocurrencies' idiosyncratic volatility, 
notably amid market tumult. These models adeptly address the conditional 

variance of returns, proving indispensable for strategic risk management. 

However, as [38] point out, the traditional statistical scaffolding of GARCH 

models often imposes implausible assumptions regarding data distribution. This 
constraint has incited a gravitation toward machine learning techniques, which 
better align with cryptocurrency prices' nonlinear and composite disposition. 

Innovative hybrids that weave together disparate methodologies receive 
growing attention. Research [39] introduced a model intertwined with 

Convolutional Neural Networks (CNN), exploiting weighted and attentive 
memory channels to encapsulate temporal cryptocurrency volatilities. This 
avant-garde synthesis elucidated predictive accuracy enhancements by 

amalgamating multifarious data sources and analytical frameworks. 

GARCH Model Overview 

GARCH models ingeniously postulate that the conditional variance of a time 

series is a function interwoven from past squared returns and past variances. 
This nuanced assumption empowers the model to encapsulate volatility clusters 

evidenced in financial series: grand shifts in asset prices often breed successive 
grand shifts, while tranquility begets tranquility. 

The archetypal GARCH(1,1) model is delineated through the following 
mathematical scaffolds: 

1. Return Equation 

𝑟𝑡 = μ + ϵ𝑡      (1) 

Here, rt symbolizes the return at time t , μ denotes the mean return, and ϵ𝑡 acts 

as the error term. 

2. Error Term: 

ϵ𝑡 = σ𝑡𝑧𝑡     (2) 

Encompassing 𝑧𝑡 as a white noise error term (customarily assumed to manifest 

normally distributed traits), and σ𝑡 as the conditional standard deviation. 
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3. Variance Equation: 

σ𝑡
2 = α0 + α1ϵ𝑡−1

2 + β1σ𝑡−1
2     (3) 

Intricately defined as: 

- σ𝑡
2 , the conditional variance (volatility) at time t , 

- α0 , a constant, 

- α1 , portraying the reverberations from prior period’s squared errors, 

- β1 , echoing the sequential influence from prior period’s volatility. 

This formulation facets GARCH models with an ability for dynamic recalibration 
to fresh financial intel, fortifying their utility in terrains marked by volatility 

clustering. 

GARCH models prevail across a spectrum of financial terrains, permeating 
stock market volatility, currency exchange fluctuations, and notably, the 

mercurial domain of cryptocurrencies. More precisely, GARCH models adeptly 
capture the volatility tapestry innate to cryptocurrencies like Bitcoin, yielding 

lucrative insights into risk management and investment strategizing research 
[29], [31]. Their adeptness in harnessing time-varying volatility renders them 
indispensable to both academicians and finance practitioners. 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 
model shines as a linchpin in the realm of volatility analysis within financial 

markets, renowned for its adeptness in addressing the idiosyncrasies of 
financial time series data. Its supremacy is derived from intrinsic qualities that 
harmonize seamlessly with the recurrent motifs of volatility clustering and 

temporal volatility shifts, pervasive across market landscapes. 

At its core, the GARCH model excels in encapsulating the phenomenon of 

volatility clustering—a recurring pattern wherein tumultuous periods in financial 
markets are not isolated but instead herald subsequent high-volatility episodes, 
and tranquil periods do the same for low volatility. This distinctive behavioral 

trait is a hallmark of financial markets, especially evident during episodes of 
market turmoil. Research has affirmed that GARCH models, notably the 

GARCH(1,1) variant, adeptly model this pattern with remarkable simplicity, 
striking an efficacious balance between pragmatic utility and clarity [40], [41]. 

A salient feature of GARCH models is their capacity to evolve, accommodating 
asymmetries in volatility. This adaptability proves invaluable when analyzing 
financial assets susceptible to differential impacts from positive versus negative 

market shocks. Asymmetric GARCH formulations, such as the GJR-GARCH 
model, empower analysts to discern how adverse shocks might exacerbate 

volatility more than favorable ones. This nuanced capability holds particular 
significance within the realms of cryptocurrencies and similarly volatile assets, 
where sentiments and market reactions can diverge starkly depending on their 

nature [42], [43]. 

The versatility of GARCH models finds empirical validation across a spectrum 

of asset classes—be it equities, fixed income securities, or digital assets like 
cryptocurrencies. [40] extensive literature review underscores the model’s 
proficiency in elucidating volatilities and returns, notably under asymmetric 

information conditions. Parallel findings by [44] reinforce the GARCH model’s 
agility in dissecting financial time series volatility devoid of intricate, higher-order 
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model dependencies, underscoring its robustness and reliability. 

Beyond their standalone capabilities, GARCH models exhibit compatibility for 
integration with other statistical methodologies, thereby magnifying their 

forecasting prowess. Hybrid models merging GARCH with machine learning 
avenues have demonstrated the potential to refine predictions by weaving 

complex, nonlinear relationships often elusive in GARCH’s traditional scope 
[45]. Moreover, coupling GARCH models with extreme value theory extends 
their analytical purview to encompass tail risks within financial markets [46]. 

The GARCH model framework inherently aligns with the vigorous demands of 
high-frequency financial data, where precision in volatility estimation is 

paramount. Studies confirm the model’s efficacy in mirroring high-frequency 
return dynamics, endowing it with utility in intraday trading and strategic risk 
management [47]. For traders and financial enterprises navigating the velocities 

of modern markets, this real-time modeling prowess proves indispensable. 

Method 

Data Preprocessing 

The initial step in our methodological framework involved meticulous data 

preprocessing—a crucial phase to ensure the integrity and quality of the dataset 
used for analyzing the Hedera Hashgraph prices dataset sourced from Kaggle. 

We began by importing the dataset (`dataset.csv`) into a Pandas DataFrame, 
enabling efficient data manipulation and analysis.  

Subsequent to data loading, we conducted a comprehensive check for missing 

values using `df.isnull().sum()`, iterating across all columns to identify any gaps 
that might skew analysis results. Recognizing the importance of complete data, 

any rows containing null entries were systematically purged using `df.dropna()`, 
ensuring our factor analysis remained uncompromised by incomplete data. 

Given the temporal nature of financial data, it was paramount to preserve 
chronological continuity. Therefore, if the dataset encapsulated a 'Date' column, 
it underwent transformation into a datetime format via `pd.to_datetime()`, 

optimizing it for time series operations. This conversion facilitated accurate 
aggregation, analysis, and plotting over time. 

Finally, the calculation of daily returns (`df['Returns']`) was executed to quantify 
relative price changes across consecutive days. Percent change functionality in 
Pandas (`pct_change()`) provided this metric, enabling a focus on volatility—a 

critical component of our analysis. To maintain data fidelity, any resulting nan 
values from this computation were expunged. 

Exploratory Data Analysis 

The Exploratory Data Analysis (EDA) phase sought to demystify underlying 
patterns within the Hedera Hashgraph dataset. Initially, we scrutated descriptive 

statistics such as mean, median, standard deviation, and quantiles for variables 
including 'Price', 'Open', 'High', 'Low', and 'Returns'. The `describe()` method 
facilitated this, offering a statistical summary pivotal for understanding data 

dispersion and central tendency. 

Transitioning to visualization, we portrayed price movements over time through 

a line graph, with matplotlib as the plotting library. This visual representation 
highlighted pivotal price inflection points, enabling the recognition of trend 
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patterns within the specified timeframe. The line graph enabled stakeholders to 

envision price evolution and potential cyclical tendencies. 

To further dissect return distributions, a histogram and Kernel Density Estimate 

(KDE) plot was generated using seaborn's `histplot()`. This combination 
provided clarity on the frequency distribution of daily returns, revealing nuances 

concerning normality and skewness within the return data. 

GARCH Model Implementation 

The culmination of our methodological approach involved deploying a GARCH 

(Generalized Autoregressive Conditional Heteroskedasticity) model. Arch 
package’s `arch_model()` function was enlisted to encapsulate and project the 
intricate temporal dependencies of return volatility. 

We opted for a GARCH(1,1) configuration—a quintessential choice in financial 
volatility modeling due to its parsimonious nature and well-documented success 

across diverse financial datasets. The model uses past squared residuals and 
past variances to predict current variance, making it adept at capturing volatility 
clustering—an observed characteristic in the financial markets. 

Upon fitting the model with the data using `fit()`, we extracted significant 
parameters and model metrics that illuminated the dataset's volatility 

characteristics. The model fitting process was executed with `disp='off'` to 
suppress iterative fitting output, focusing instead on analyzing the summary 
statistics provided by the fitted model.  

Each phase—from preprocessing to GARCH model deployment—was 
meticulously executed to unravel and articulate the inherent volatility within the 

Hedera Hashgraph pricing dataset, fostering a deeper understanding of market 
dynamics. The continuum of preprocessing, EDA, and advanced modeling 
forged a robust analytical trajectory, ensuring insights gleaned were both 

empirical and robust. 

The data for this study was sourced from publicly available cryptocurrency 

market data providers, such as CoinMarketCap and CryptoCompare, which 
offer comprehensive historical data on Bitcoin prices and trading volumes. The 
dataset spans from January 1, 2021, to December 31, 2023, and includes daily 

closing prices and trading volumes for Bitcoin. 

Result and Discussion 

Statistical Results and Key Insights from the GARCH Analysis 

The GARCH(1,1) model was employed to analyze the volatility of Hedera 
Hashgraph's price data, yielding significant insights into the asset's market 
behavior. The model summary reveals a Log-Likelihood of 2927.50, indicating 

a strong fit to the data. The Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) values of -5846.99 and -5824.79, respectively, 

further corroborate the model's robustness, as lower values signify better model 
performance. These metrics collectively affirm the GARCH model's suitability 
for capturing the volatility dynamics of Hedera Hashgraph. 

The estimated parameters of the GARCH(1,1) model provide critical insights 
into the volatility structure. Alpha (α): The coefficient for the lagged squared 

residuals (α = 0.20) suggests that 20% of the volatility from the previous day 
influences the current day's volatility. This indicates a moderate persistence of 
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shocks in the market. Beta (β): The coefficient for the lagged conditional 

variance (β = 0.78) highlights that 78% of the previous day's volatility carries 
over to the current day. This high value underscores the presence of volatility 

clustering, a hallmark of financial markets where periods of high volatility are 
followed by more high volatility, and low volatility by more low volatility. The 

omega parameter (8.6161e-05) represents the baseline volatility, which is 
relatively small but statistically significant (p < 0.01). This indicates that even in 
the absence of recent shocks, a minimal level of volatility persists in the market. 

Volatility Plots and Historical Data Comparison 

To contextualize the GARCH model's findings, we visualized the conditional 
volatility over time alongside the historical price data. The plot of conditional 

volatility (figure 1) reveals distinct periods of heightened volatility, often 
coinciding with significant market events or news. For instance, spikes in 

volatility align with periods of speculative trading or macroeconomic 
announcements, reflecting the sensitivity of Hedera Hashgraph's price to 
external factors. 

 

Figure 1 Conditional Volatility Over Time 

Figure 1 illustrates the conditional volatility of an asset over time, spanning from 

2020 to 2025. The y-axis represents the volatility levels, while the x-axis shows 
the timeline. The graph reveals several notable spikes in volatility, particularly 
in 2020 and 2021, followed by periods of more moderate volatility. These sharp 

increases in volatility likely correspond to significant market events or economic 
shocks, such as speculative trading, regulatory announcements, or broader 

market instability. The volatility peaks indicate times of heightened uncertainty 
and market turbulence, while the lower volatility periods reflect more stable 
times. 

The fluctuations in conditional volatility align with the findings from the 
GARCH(1,1) model, which indicates volatility clustering—a phenomenon where 

periods of high volatility are often followed by more high volatility. The model’s 
high beta (β) value of 0.78 suggests that volatility is persistent, while the 
moderate alpha (α) value of 0.20 reflects a moderate response to recent market 

shocks. This pattern is characteristic of financial markets, especially 
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cryptocurrencies, where price movements are sensitive to both market 

speculation and external factors. By examining these volatility patterns, 
investors and analysts can better understand the underlying market dynamics 

and adjust their strategies to manage risk. The volatility spikes, which align with 
major market events, reinforce the importance of analyzing volatility to forecast 

potential future market movements and inform investment decisions. 

A comparative plot (figure 2) juxtaposes the price and conditional volatility over 
time. This visualization highlights the inverse relationship between price stability 

and volatility: during periods of sharp price movements, volatility spikes, while 
stable price trends correspond to lower volatility. This pattern aligns with the 

volatility clustering phenomenon captured by the GARCH model. 

 

Figure 2 Price vs Conditional Volatility 

Figure 2 compares the price of an asset with its conditional volatility over time, 

spanning from 2020 to 2025. The blue line represents the price of the asset, 
while the orange line represents the conditional volatility. Both variables show 

noticeable fluctuations over time, with several sharp peaks, particularly around 
2020 and again in 2021, followed by a stabilization period in the later years. 

The relationship between price and volatility is evident: price spikes are often 

followed by corresponding volatility surges. For example, significant price 
increases, especially around mid-2020 and late 2021, are mirrored by 

substantial increases in volatility. This illustrates the volatility clustering 
phenomenon, where periods of high price movement are followed by 
heightened market uncertainty and increased volatility. In contrast, when the 

price stabilizes, volatility decreases, reflecting periods of lower market stress. 
These patterns align with the findings from the GARCH(1,1) model, which 

showed that volatility tends to persist over time, particularly during periods of 
significant price movement. 

The volatility spikes tend to precede or coincide with price movements, 

indicating that market participants may react to price volatility, causing further 
fluctuations. This reinforces the idea that external shocks, market speculation, 

and major events heavily influence both price and volatility. Understanding this 
relationship is crucial for risk management and prediction, as it allows investors 
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to anticipate potential price swings and volatility changes. Overall, this 

visualization reinforces the dynamic interaction between market prices and 
volatility, showing how price movements and the market's reaction (volatility) 

are intrinsically linked, often amplifying each other during periods of market 
turbulence. To quantify the model's performance and volatility characteristics, 

we constructed two tables. Table 1 show Model Performance Metrics. This table 
underscores the model's strong fit and the significance of its parameters. 

Table 1. Model Performance Metrics 

Metric Value 

Log Likelihood 2927.50 

AIC -5846.99 

BIC -5824.79 

Alpha (α) 0.20 

Beta (β) 0.78 

Table 2 (Volatility Periods Summary) categorizes volatility into high and low 
periods based on the mean conditional volatility. High volatility periods account 

for approximately 33% of the dataset, with significantly higher mean volatility 
(0.086) compared to low volatility periods (0.039). 

Table 2. Volatility Periods Summary 

Volatility 

Level 
Count Mean   Std     Min     25%     50%     75%     Max     

High              622    0.086   0.042   0.055   0.061   0.072   0.093   0.404   

Low               1279   0.039   0.008   0.022   0.033   0.039   0.046   0.054   

Discussion of Findings 

The GARCH(1,1) model's findings reveal volatility clustering as a defining 

characteristic of Hedera Hashgraph's price dynamics. This phenomenon aligns 
with broader cryptocurrency market behavior, where price movements are often 
driven by speculative trading, news events, and macroeconomic factors. The 

high beta (β) value (0.78) indicates that volatility persists over time, making 
Hedera Hashgraph susceptible to prolonged periods of market turbulence. 

The alpha (α) value (0.20) suggests that Hedera's price is moderately reactive 
to recent market shocks, reflecting the asset's sensitivity to external influences. 
This sensitivity is further evidenced by the alignment of volatility spikes with 

significant market events, as observed in the visualizations. 

From a data mining perspective, these findings underscore the utility of GARCH 

models in predicting and managing risk in cryptocurrency markets. By 
identifying periods of high volatility, investors and analysts can develop 
strategies to mitigate potential losses during turbulent market conditions. 

Additionally, the model's robust performance metrics validate its applicability to 
other cryptocurrencies and financial assets, offering a scalable framework for 

volatility analysis. 

The results of this study emphasize the pivotal role that real-time data analysis 
and volatility forecasting play in successfully navigating the highly dynamic and 

unpredictable cryptocurrency market. This is particularly relevant when 
considering the price dynamics of Hedera Hashgraph, which are notably 

marked by volatility clustering and a heightened sensitivity to various external 
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factors, such as regulatory changes and macroeconomic events. Consequently, 

investors and analysts are increasingly relying on advanced analytical tools, 
such as Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

models, to provide deeper insights and inform more strategic investment 
decisions. This approach not only aids in grasping the underlying volatility 

patterns but also in anticipating future price movements with greater precision. 

Furthermore, the integration of GARCH models with cutting-edge machine 
learning techniques holds significant promise for enhancing predictive 

accuracy. Machine learning algorithms can process vast amounts of complex 
data to identify patterns and trends that may not be immediately apparent, 

thereby refining the forecasts generated by traditional GARCH models. This 
fusion of methodologies could lead to the development of more sophisticated 
risk management strategies, empowering investors to mitigate potential losses 

and optimize their portfolios. As the cryptocurrency market continues to evolve 
and attract a diverse range of participants, the ability to leverage these 

advanced tools will be crucial in maintaining a competitive edge and capitalizing 
on emerging opportunities. 

Conclusion 

The analysis of Hedera Hashgraph's price volatility using the GARCH(1,1) 

model has yielded significant insights into the asset's market behavior. The 
model's robust performance metrics, including a high Log-Likelihood (2927.50) 

and low AIC (-5846.99) and BIC (-5824.79) values, underscore its effectiveness 
in capturing the volatility dynamics of Hedera Hashgraph. The estimated 

parameters—alpha (α = 0.20) and beta (β = 0.78)—reveal the presence of 
volatility clustering and the persistence of market shocks, aligning with the 
broader characteristics of cryptocurrency markets. These findings highlight the 

sensitivity of Hedera's price to external factors, such as market news and 
macroeconomic events, which often trigger periods of heightened volatility. 

The visualizations of conditional volatility and historical price data further 
contextualize these findings, illustrating the inverse relationship between price 
stability and volatility. Periods of sharp price movements coincide with spikes in 

volatility, while stable price trends correspond to lower volatility. This pattern 
underscores the importance of monitoring volatility in real-time, as it provides 

critical insights for risk management and investment strategies. The 
categorization of volatility into high and low periods, with high volatility 
accounting for approximately 33% of the dataset, offers a practical framework 

for identifying and mitigating risks during turbulent market conditions. 

From a data mining perspective, the GARCH(1,1) model's success in analyzing 

Hedera Hashgraph's volatility demonstrates the transformative potential of 
advanced statistical techniques in financial markets. By leveraging these tools, 
investors and analysts can develop more informed strategies to navigate the 

complexities of cryptocurrency markets. Furthermore, the integration of GARCH 
models with machine learning methods presents an exciting avenue for future 

research. Combining the strengths of these approaches could enhance 
predictive accuracy and enable the identification of complex, nonlinear 
relationships that traditional models may overlook. 

Future research should explore the application of hybrid models, such as 
GARCH-Machine Learning frameworks, to further refine volatility forecasting in 

cryptocurrency markets. Additionally, investigating the impact of external 
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factors, such as regulatory changes and technological advancements, on 

Hedera Hashgraph's price dynamics could provide deeper insights into the 
asset's market behavior. By expanding the scope of analysis to include a 

broader range of cryptocurrencies and financial assets, researchers can 
develop more comprehensive models that capture the diverse and evolving 

nature of digital markets. These advancements will not only enhance our 
understanding of cryptocurrency volatility but also pave the way for more 
effective risk management and investment strategies in the rapidly changing 

financial landscape. 

Declarations 

Author Contributions 

Conceptualization: C.I., W.C.S., and S.A.G.; Methodology: W.C.S.; Software: 

C.I.; Validation: C.I., W.C.S., and S.A.G.; Formal Analysis: C.I., W.C.S., and 
S.A.G.; Investigation: C.I.; Resources: W.C.S.; Data Curation: W.C.S.; 

Writing—Original Draft Preparation: C.I., W.C.S., and S.A.G.; Writing—Review 
and Editing: W.C.S., C.I., and S.A.G.; Visualization: C.I. All authors have read 
and agreed to the published version of the manuscript. 

Data Availability Statement 

The data presented in this study are available on request from the 
corresponding author. 

Funding 

The authors received no financial support for the research, authorship, and/or 
publication of this article. 

Institutional Review Board Statement 

Not applicable. 

Informed Consent Statement 

Not applicable. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported 
in this paper. 

References 

[1] L. Juškaitė and L. Gudelytė-Žilinskienė, “Investigation of the Feasibility of Including Different 

Cryptocurrencies in the Investment Portfolio for Its Diversification,” Business Management 

and Economics Engineering, vol. 20, no. 01, pp. 172–188, 2022, doi: 

10.3846/bmee.2022.16883. 

[2] A. C. Inci and R. Lagasse, “Cryptocurrencies: Applications and Investment Opportunities,” 

Journal of Capital Markets Studies, vol. 3, no. 2, pp. 98–112, 2019, doi: 10.1108/jcms-05-

2019-0032. 

[3] H. Zhao and L. Zhang, “Financial Literacy or Investment Experience: Which Is More 

Influential in Cryptocurrency Investment?,” The International Journal of Bank Marketing, vol. 

39, no. 7, pp. 1208–1226, 2021, doi: 10.1108/ijbm-11-2020-0552. 

[4] G. Sun, “Cryptocurrency Price Prediction Based on Xgboost, LightGBM and BNN,” Applied 

and Computational Engineering, vol. 49, no. 1, pp. 273–279, 2024, doi: 10.54254/2755-

2721/49/20241414. 

[5] J. G. Field and A. C. Inci, “Risk Translation: How cryptocurrency Impacts Company Risk, 

https://doi.org/10.3846/bmee.2022.16883
https://doi.org/10.3846/bmee.2022.16883
https://doi.org/10.3846/bmee.2022.16883
https://doi.org/10.3846/bmee.2022.16883
https://doi.org/10.1108/jcms-05-2019-0032
https://doi.org/10.1108/jcms-05-2019-0032
https://doi.org/10.1108/jcms-05-2019-0032
https://doi.org/10.1108/ijbm-11-2020-0552
https://doi.org/10.1108/ijbm-11-2020-0552
https://doi.org/10.1108/ijbm-11-2020-0552
https://doi.org/10.54254/2755-2721/49/20241414
https://doi.org/10.54254/2755-2721/49/20241414
https://doi.org/10.54254/2755-2721/49/20241414
https://doi.org/10.1108/jcms-02-2023-0003


 Journal of Current Research in Blockchain 

 

Izumi, et al., (2025) J. Curr. Res. Blockchain. 

 

149 

 

 

Beta and Returns,” Journal of Capital Markets Studies, vol. 7, no. 1, pp. 5–21, 2023, doi: 

10.1108/jcms-02-2023-0003. 

[6] B. Shi, “The Relationship of Cryptocurrencies and the Stock Market,” Advances in 

Economics Management and Political Sciences, vol. 26, no. 1, pp. 80–85, 2023, doi: 

10.54254/2754-1169/26/20230549. 

[7] N. Antonakakis, I. Chatziantoniou, and D. Gabauer, “Cryptocurrency Market Contagion: 

Market Uncertainty, Market Complexity, and Dynamic Portfolios,” Journal of International 

Financial Markets Institutions and Money, vol. 61, pp. 37–51, 2019, doi: 

10.1016/j.intfin.2019.02.003. 

[8] K. Mehta, “Illuminating the Dark Corners: A Qualitative Examination of Cryptocurrency’s 

Risk,” Digital Policy Regulation and Governance, vol. 26, no. 2, pp. 188–208, 2024, doi: 

10.1108/dprg-10-2023-0147. 

[9] “Sentiment Analysis on Cryptocurrency Tweets Using Machine Learning,” Interantional 

Journal of Scientific Research in Engineering and Management, vol. 07, no. 10, pp. 1–11, 

2023, doi: 10.55041/ijsrem25924. 

[10] S. Rouhani and E. Abedin, “Crypto-Currencies Narrated on Tweets: A Sentiment Analysis 

Approach,” International Journal of Ethics and Systems, vol. 36, no. 1, pp. 58–72, 2019, doi: 

10.1108/ijoes-12-2018-0185. 

[11] N. A. Anaza, “Is It FOMO or Is It ME? The Influence of Personality Traits on Cryptocurrency 

Consumption,” Psychology and Marketing, vol. 41, no. 1, pp. 184–202, 2023, doi: 

10.1002/mar.21919. 

[12] P. Mwansa, “An Exploration of Blockchain Protocols for Trusted Vote Aggregation: A 

Consensus Algorithm Approach,” iCARTi, vol. 2023, pp. 107–113, 2023, doi: 

10.59200/icarti.2023.015. 

[13] C. Arslan, S. Sipahioğlu, E. Safak, M. Gozutok, and T. Köprülü, “Comparative Analysis and 

Modern Applications of PoW, PoS, PPoS Blockchain Consensus Mechanisms and New 

Distributed Ledger Technologies,” Advances in Science Technology and Engineering 

Systems Journal, vol. 6, no. 5, pp. 279–290, 2021, doi: 10.25046/aj060531. 

[14] R. R. Mukkamala and R. Vatrapu, “Distributed Ledger Technologies and Blockchain for 

FinTech,” pp. 79–98, 2021, doi: 10.4324/9780429292903-8. 

[15] J. Davids, “Technical Sandbox for a Global Patient Co-Owned Cloud (GPOC),” 2024, doi: 

10.21203/rs.3.rs-3004979/v2. 

[16] J. He, “Overcoming Data Silos in Healthcare: The Potential of Blockchain and Federated 

Learning on the Hedera Platform,” Applied and Computational Engineering, vol. 18, no. 1, 

pp. 1–4, 2023, doi: 10.54254/2755-2721/18/20230953. 

[17] R. Juwita*, “The Determinants of Cryptocurrency Returns,” Jurnal Ilmu Keuangan Dan 

Perbankan (Jika), vol. 12, no. 2, pp. 235–246, 2023, doi: 10.34010/jika.v12i2.9461. 

[18] S. Azman, D. Pathmanathan, and A. Thavaneswaran, “Forecasting the Volatility of 

Cryptocurrencies in the Presence of COVID-19 With the State Space Model and Kalman 

Filter,” Mathematics, vol. 10, no. 17, p. 3190, 2022, doi: 10.3390/math10173190. 

[19] A. S. Girsang, “Hybrid LSTM and GRU for Cryptocurrency Price Forecasting Based on Social 

Network Sentiment Analysis Using FinBERT,” Ieee Access, vol. 11, pp. 120530–120540, 

2023, doi: 10.1109/access.2023.3324535. 

[20] R. Parekh et al., “DL-GuesS: Deep Learning and Sentiment Analysis-Based Cryptocurrency 

Price Prediction,” Ieee Access, vol. 10, pp. 35398–35409, 2022, doi: 

10.1109/access.2022.3163305. 

[21] R. Chowdhury, M. Rahman, M. R. Rahman, and M. R. C. Mahdy, “An Approach to Predict 

and Forecast the Price of Constituents and Index of Cryptocurrency Using Machine 

Learning,” Physica a Statistical Mechanics and Its Applications, vol. 551, p. 124569, 2020, 

doi: 10.1016/j.physa.2020.124569. 

[22] N. B. Cheikh, Y. B. Zaied, and J. Chevallier, “Asymmetric Volatility in Cryptocurrency 

Markets: New Evidence From Smooth Transition GARCH Models,” Finance Research 

Letters, vol. 35, p. 101293, 2020, doi: 10.1016/j.frl.2019.09.008. 

[23] N. Kyriazis, “A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency 

Financial Assets,” Journal of Risk and Financial Management, vol. 14, no. 7, p. 293, 2021, 

doi: 10.3390/jrfm14070293. 

[24] J. M. Kim, C. Jun, and J. Lee, “Forecasting the Volatility of the Cryptocurrency Market by 

GARCH and Stochastic Volatility,” Mathematics, vol. 9, no. 14, p. 1614, 2021, doi: 

10.3390/math9141614. 

[25] Z. Ftiti, W. Louhichi, and H. B. Ameur, “Cryptocurrency Volatility Forecasting: What Can We 

Learn From the First Wave of the COVID-19 Outbreak?,” Annals of Operations Research, 

vol. 330, no. 1–2, pp. 665–690, 2021, doi: 10.1007/s10479-021-04116-x. 

https://doi.org/10.1108/jcms-02-2023-0003
https://doi.org/10.1108/jcms-02-2023-0003
https://doi.org/10.54254/2754-1169/26/20230549
https://doi.org/10.54254/2754-1169/26/20230549
https://doi.org/10.54254/2754-1169/26/20230549
https://doi.org/10.1016/j.intfin.2019.02.003
https://doi.org/10.1016/j.intfin.2019.02.003
https://doi.org/10.1016/j.intfin.2019.02.003
https://doi.org/10.1016/j.intfin.2019.02.003
https://doi.org/10.1108/dprg-10-2023-0147
https://doi.org/10.1108/dprg-10-2023-0147
https://doi.org/10.1108/dprg-10-2023-0147
https://doi.org/10.55041/ijsrem25924
https://doi.org/10.55041/ijsrem25924
https://doi.org/10.55041/ijsrem25924
https://doi.org/10.1108/ijoes-12-2018-0185
https://doi.org/10.1108/ijoes-12-2018-0185
https://doi.org/10.1108/ijoes-12-2018-0185
https://doi.org/10.1002/mar.21919
https://doi.org/10.1002/mar.21919
https://doi.org/10.1002/mar.21919
https://doi.org/10.59200/icarti.2023.015
https://doi.org/10.59200/icarti.2023.015
https://doi.org/10.59200/icarti.2023.015
https://doi.org/10.25046/aj060531
https://doi.org/10.25046/aj060531
https://doi.org/10.25046/aj060531
https://doi.org/10.25046/aj060531
https://doi.org/10.4324/9780429292903-8
https://doi.org/10.4324/9780429292903-8
https://doi.org/10.21203/rs.3.rs-3004979/v2
https://doi.org/10.21203/rs.3.rs-3004979/v2
https://doi.org/10.54254/2755-2721/18/20230953
https://doi.org/10.54254/2755-2721/18/20230953
https://doi.org/10.54254/2755-2721/18/20230953
https://doi.org/10.34010/jika.v12i2.9461
https://doi.org/10.34010/jika.v12i2.9461
https://doi.org/10.3390/math10173190
https://doi.org/10.3390/math10173190
https://doi.org/10.3390/math10173190
https://doi.org/10.1109/access.2023.3324535
https://doi.org/10.1109/access.2023.3324535
https://doi.org/10.1109/access.2023.3324535
https://doi.org/10.1109/access.2022.3163305
https://doi.org/10.1109/access.2022.3163305
https://doi.org/10.1109/access.2022.3163305
https://doi.org/10.1016/j.physa.2020.124569
https://doi.org/10.1016/j.physa.2020.124569
https://doi.org/10.1016/j.physa.2020.124569
https://doi.org/10.1016/j.physa.2020.124569
https://doi.org/10.1016/j.frl.2019.09.008
https://doi.org/10.1016/j.frl.2019.09.008
https://doi.org/10.1016/j.frl.2019.09.008
https://doi.org/10.3390/jrfm14070293
https://doi.org/10.3390/jrfm14070293
https://doi.org/10.3390/jrfm14070293
https://doi.org/10.3390/math9141614
https://doi.org/10.3390/math9141614
https://doi.org/10.3390/math9141614
https://doi.org/10.1007/s10479-021-04116-x
https://doi.org/10.1007/s10479-021-04116-x
https://doi.org/10.1007/s10479-021-04116-x


 Journal of Current Research in Blockchain 

 

Izumi, et al., (2025) J. Curr. Res. Blockchain. 

 

150 

 

 

[26] N. Kargar, “Generalized Autoregressive Conditional Heteroscedasticity (GARCH) for 

Predicting Volatility in Stock Market,” International Journal of Multidisciplinary Research and 

Growth Evaluation, vol. 2, no. 3, pp. 73–75, 2021, doi: 10.54660/.ijmrge.2021.2.3.73-75. 

[27] P. Katsiampa, “Volatility Estimation for Bitcoin: A Comparison of GARCH Models,” 

Economics Letters, vol. 158, pp. 3–6, 2017, doi: 10.1016/j.econlet.2017.06.023. 

[28] P. C. Obidike, Frankline C. S. A. Okeke, S. I. Echeonwu, and S. F. Aleke, “Sensitivity of 

Stock Returns Volatility and Money Market Rates:  Insight From Nigeria,” Talaa Journal of 

Islamic Finance, vol. 2, no. 1, pp. 01–20, 2022, doi: 10.54045/talaa.v2i1.385. 

[29] A. H. Dyhrberg, “Bitcoin, Gold and the Dollar – A GARCH Volatility Analysis,” Finance 

Research Letters, vol. 16, pp. 85–92, 2016, doi: 10.1016/j.frl.2015.10.008. 

[30] S. Salamat, L. Niu, S. Naseem, M. Mohsin, M. Z. u. Rehman, and S. A. Baig, “Modeling 

Cryptocurrencies Volatility Using GARCH Models: A Comparison Based on Normal and 

Student’s T-Error Distribution,” Journal of Entrepreneurship and Sustainability Issues, vol. 7, 

no. 3, pp. 1580–1596, 2020, doi: 10.9770/jesi.2020.7.3(11). 

[31] J. Chu, S. Chan, S. Nadarajah, and J. Osterrieder, “GARCH Modelling of Cryptocurrencies,” 

Journal of Risk and Financial Management, vol. 10, no. 4, p. 17, 2017, doi: 

10.3390/jrfm10040017. 

[32] E. Bouri, G. Azzi, and A. H. Dyhrberg, “On the Return-Volatility Relationship in the Bitcoin 

Market Around the Price Crash of 2013,” Economics the Open-Access Open-Assessment 

E-Journal, vol. 11, no. 1, 2017, doi: 10.5018/economics-ejournal.ja.2017-2. 

[33] S. Mohapatra, N. Ahmed, and P. Alencar, “KryptoOracle: A Real-Time Cryptocurrency Price 

Prediction Platform Using Twitter Sentiments,” pp. 5544–5551, 2019, doi: 

10.1109/bigdata47090.2019.9006554. 

[34] B. A. Tanos, “Price Delay and Market Efficiency of Cryptocurrencies: The Impact of Liquidity 

and Volatility During the COVID-19 Pandemic,” Journal of Risk and Financial Management, 

vol. 17, no. 5, p. 193, 2024, doi: 10.3390/jrfm17050193. 

[35] J. P. Fleischer, G. v. Laszewski, C. A. Theran, and Y. J. P. Bautista, “Time Series Analysis 

of Cryptocurrency Prices Using Long Short-Term Memory,” Algorithms, vol. 15, no. 7, p. 230, 

2022, doi: 10.3390/a15070230. 

[36] P. Alipour and S. E. Charandabi, “Analyzing the Interaction Between Tweet Sentiments and 

Price Volatility of Cryptocurrencies,” European Journal of Business Management and 

Research, vol. 8, no. 2, pp. 211–215, 2023, doi: 10.24018/ejbmr.2023.8.2.1865. 

[37] S. Alghamdi, S. Alqethami, T. Alsubait, and H. Alhakami, “Cryptocurrency Price Prediction 

Using Forecasting and Sentiment Analysis,” International Journal of Advanced Computer 

Science and Applications, vol. 13, no. 10, 2022, doi: 10.14569/ijacsa.2022.01310105. 

[38] A. M. Khedr, I. Arif, P. R. P, M. El‐Bannany, S. M. Alhashmi, and M. Sreedharan, 

“Cryptocurrency Price Prediction Using Traditional Statistical and Machine‐learning 

Techniques: A Survey,” Intelligent Systems in Accounting Finance & Management, vol. 28, 

no. 1, pp. 3–34, 2021, doi: 10.1002/isaf.1488. 

[39] Z. Zhang, H.-N. Dai, J. Zhou, S. K. Mondal, M. M. García, and H. Wang, “Forecasting 

Cryptocurrency Price Using Convolutional Neural Networks With Weighted and Attentive 

Memory Channels,” Expert Systems With Applications, vol. 183, p. 115378, 2021, doi: 

10.1016/j.eswa.2021.115378. 

[40] R. Bhowmik and S. Wang, “Stock Market Volatility and Return Analysis: A Systematic 

Literature Review,” Entropy, vol. 22, no. 5, p. 522, 2020, doi: 10.3390/e22050522. 

[41] J. Arnerić and T. Poklepović, “Nonlinear Extension of Asymmetric Garch Model Within 

Neural Network Framework,” 2016, doi: 10.5121/csit.2016.60609. 

[42] N. Apergis, “COVID-19 and Cryptocurrency Volatility: Evidence From Asymmetric 

Modelling,” Finance Research Letters, vol. 47, p. 102659, 2022, doi: 

10.1016/j.frl.2021.102659. 

[43] F. Mostafa, P. Saha, M. R. Islam, and N. Q. Nguyen, “GJR-GARCH Volatility Modeling Under 

NIG and ANN for Predicting Top Cryptocurrencies,” Journal of Risk and Financial 

Management, vol. 14, no. 9, p. 421, 2021, doi: 10.3390/jrfm14090421. 

[44] E. K. Mudahogora and D. Ndanguza, “Modeling the Rwanda Exchange Rates by GARCH 

Models,” African Journal of Applied Statistics, vol. 8, no. 1, pp. 1525–1544, 2021, doi: 

10.16929/ajas/2021.1525.261. 

[45] A. F. Jumoorty, R. Thoplan, and J. Narsoo, “High Frequency Volatility Forecasting: A New 

Approach Using a Hybrid ANN‐MC‐GARCH Model,” International Journal of Finance & 

Economics, vol. 28, no. 4, pp. 4156–4175, 2022, doi: 10.1002/ijfe.2640. 

[46] K. Naradh, K. Chinhamu, and R. Chifurira, “Estimating the Value-at-Risk of JSE Indices and 

South African Exchange Rate With Generalized Pareto and Stable Distributions,” Investment 

Management and Financial Innovations, vol. 18, no. 3, pp. 151–165, 2021, doi: 

https://doi.org/10.54660/.ijmrge.2021.2.3.73-75
https://doi.org/10.54660/.ijmrge.2021.2.3.73-75
https://doi.org/10.54660/.ijmrge.2021.2.3.73-75
https://doi.org/10.1016/j.econlet.2017.06.023
https://doi.org/10.1016/j.econlet.2017.06.023
https://doi.org/10.54045/talaa.v2i1.385
https://doi.org/10.54045/talaa.v2i1.385
https://doi.org/10.54045/talaa.v2i1.385
https://doi.org/10.1016/j.frl.2015.10.008
https://doi.org/10.1016/j.frl.2015.10.008
https://doi.org/10.9770/jesi.2020.7.3(11)
https://doi.org/10.9770/jesi.2020.7.3(11)
https://doi.org/10.9770/jesi.2020.7.3(11)
https://doi.org/10.9770/jesi.2020.7.3(11)
https://doi.org/10.3390/jrfm10040017
https://doi.org/10.3390/jrfm10040017
https://doi.org/10.3390/jrfm10040017
https://doi.org/10.5018/economics-ejournal.ja.2017-2
https://doi.org/10.5018/economics-ejournal.ja.2017-2
https://doi.org/10.5018/economics-ejournal.ja.2017-2
https://doi.org/10.1109/bigdata47090.2019.9006554
https://doi.org/10.1109/bigdata47090.2019.9006554
https://doi.org/10.1109/bigdata47090.2019.9006554
https://doi.org/10.3390/jrfm17050193
https://doi.org/10.3390/jrfm17050193
https://doi.org/10.3390/jrfm17050193
https://doi.org/10.3390/a15070230
https://doi.org/10.3390/a15070230
https://doi.org/10.3390/a15070230
https://doi.org/10.24018/ejbmr.2023.8.2.1865
https://doi.org/10.24018/ejbmr.2023.8.2.1865
https://doi.org/10.24018/ejbmr.2023.8.2.1865
https://doi.org/10.14569/ijacsa.2022.01310105
https://doi.org/10.14569/ijacsa.2022.01310105
https://doi.org/10.14569/ijacsa.2022.01310105
https://doi.org/10.1002/isaf.1488
https://doi.org/10.1002/isaf.1488
https://doi.org/10.1002/isaf.1488
https://doi.org/10.1002/isaf.1488
https://doi.org/10.1016/j.eswa.2021.115378
https://doi.org/10.1016/j.eswa.2021.115378
https://doi.org/10.1016/j.eswa.2021.115378
https://doi.org/10.1016/j.eswa.2021.115378
https://doi.org/10.3390/e22050522
https://doi.org/10.3390/e22050522
https://doi.org/10.5121/csit.2016.60609
https://doi.org/10.5121/csit.2016.60609
https://doi.org/10.1016/j.frl.2021.102659
https://doi.org/10.1016/j.frl.2021.102659
https://doi.org/10.1016/j.frl.2021.102659
https://doi.org/10.3390/jrfm14090421
https://doi.org/10.3390/jrfm14090421
https://doi.org/10.3390/jrfm14090421
https://doi.org/10.16929/ajas/2021.1525.261
https://doi.org/10.16929/ajas/2021.1525.261
https://doi.org/10.16929/ajas/2021.1525.261
https://doi.org/10.1002/ijfe.2640
https://doi.org/10.1002/ijfe.2640
https://doi.org/10.1002/ijfe.2640
https://doi.org/10.21511/imfi.18(3).2021.14
https://doi.org/10.21511/imfi.18(3).2021.14
https://doi.org/10.21511/imfi.18(3).2021.14


 Journal of Current Research in Blockchain 

 

Izumi, et al., (2025) J. Curr. Res. Blockchain. 

 

151 

 

 

10.21511/imfi.18(3).2021.14. 

[47] A. Ampountolas, “Cryptocurrencies Intraday High-Frequency Volatility Spillover Effects 

Using Univariate and Multivariate GARCH Models,” International Journal of Financial 

Studies, vol. 10, no. 3, p. 51, 2022, doi: 10.3390/ijfs10030051. 

 

https://doi.org/10.21511/imfi.18(3).2021.14
https://doi.org/10.3390/ijfs10030051
https://doi.org/10.3390/ijfs10030051
https://doi.org/10.3390/ijfs10030051

