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ABSTRACT 

Gas fees play a crucial role in Ethereum blockchain transactions, directly affecting the 

cost and efficiency of decentralized applications. This study analyzes gas fee patterns 

across transaction types, temporal trends, and anomalous behaviors using a dataset 

of 1,000 Ethereum transactions. The results reveal that the average gas price was 

120.5 Gwei, with a standard deviation of 45.2 Gwei, highlighting significant variability. 

Smart contract functions exhibited varying gas usage, with mint operations 

consuming the highest average gas (1,500,000 units) compared to approve 

(1,200,000 units) and transfer (800,000 units). A positive correlation (r = 0.65) was 

observed between gas price and value transferred, suggesting that higher-value 

transactions often incur elevated gas fees. Temporal analysis showed predictable 

patterns, with peak gas prices occurring between 13:00 - 17:00 UTC during high 

network activity and lower prices between 02:00 - 06:00 UTC. Additionally, anomaly 

detection identified 15 outlier transactions, including one with an unusually high gas 

price of 500 Gwei, reflecting network congestion or prioritization strategies. These 

findings provide actionable insights for optimizing transaction costs and improving 

smart contract efficiency. Future research could explore layer-2 scaling solutions, 

alternative fee mechanisms, and machine learning approaches for gas price 

prediction. This study contributes to a deeper understanding of Ethereum’s gas fee 

dynamics, offering valuable guidance for developers, users, and researchers in the 

blockchain ecosystem. 

Keywords Ethereum Gas Fees, Smart Contract Optimization, Blockchain Transaction 

Costs, Temporal Analysis in Blockchain, Gas Usage Patterns 

INTRODUCTION 

Blockchain technology has revolutionized the way digital transactions are 

conducted, offering decentralized, secure, and transparent platforms for various 

applications [1]. Among these, Ethereum has emerged as one of the leading 

blockchain networks, primarily due to its support for smart contracts—self-

executing code that facilitates complex operations beyond simple 

cryptocurrency transfers [2]. However, the execution of transactions on 

Ethereum incurs gas fees, a mechanism designed to allocate computational 

resources and maintain network integrity. These fees, expressed in Gwei, 

represent a critical cost factor for users and developers alike. Gas fees are 

determined by multiple factors, including the computational complexity of the 

transaction, current network congestion, and user-defined parameters such as 

gas price. The variability in gas fees poses challenges for Ethereum’s adoption, 

as high costs can deter users from engaging with decentralized applications 

(dApps), particularly during periods of high network activity [3]. Moreover, the 
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rise of sophisticated dApps, including Decentralized Finance (DeFi) platforms 

and Non-Fungible Tokens (NFTs), has further intensified the demand for 

efficient gas usage [4], [5]. 

This study aims to analyze gas fee patterns in Ethereum transactions, focusing 

on three key aspects: (1) the relationship between gas usage and smart contract 

functions, (2) temporal trends in gas prices, and (3) the identification of 

anomalies in gas fee behavior [6]. By examining a dataset of Ethereum 

transactions, this research seeks to uncover actionable insights that can guide 

users in optimizing transaction costs and developers in designing more gas-

efficient smart contracts [7]. The findings of this study are significant for several 

reasons. First, understanding gas fee dynamics can help users strategically 

time their transactions to minimize costs. Second, developers can leverage 

these insights to improve the efficiency of smart contracts, enhancing the 

scalability and usability of dApps. Lastly, the identification of anomalies in gas 

fees can offer a deeper understanding of user behavior and network conditions, 

contributing to the broader discourse on blockchain optimization [8]. The 

remainder of this paper is organized as follows: Section 2 reviews related work 

on gas fee analysis and blockchain optimization. Section 3 outlines the 

methodology used in this study, including data collection and analysis 

techniques. Section 4 presents the results, highlighting key patterns and 

findings. Section 5 discusses the implications of these results, and Section 6 

concludes the study with recommendations for future research. 

Literature Review 

Gas fees in Ethereum, a critical component of blockchain transaction costs, 

have been extensively studied in recent years. This section reviews existing 

research on gas fee mechanisms, smart contract optimization, temporal trends, 

and anomaly detection, highlighting gaps addressed in this study [9]. The 

variability of gas fees in Ethereum has been a focal point of blockchain research. 

Wang et al. [10] explored how network congestion leads to gas fee spikes, 

emphasizing the need for scalable solutions. Similarly, Wang et al. [11] analyzed 

the Ethereum Improvement Proposal (EIP)-1559, which introduced a base fee 

mechanism to stabilize gas prices while enabling users to pay optional tips for 

faster transaction processing. Their findings indicate that while EIP-1559 

reduces volatility, it does not eliminate high costs during peak demand. Smart 

contract design significantly impacts gas usage. Kumar et al. [12] identified key 

optimization techniques, such as reducing storage operations and leveraging 

efficient algorithms, to lower gas costs in decentralized applications. Meanwhile, 

Guo et al. [13] studied gas-intensive operations like token minting and multi-

signature wallet interactions, demonstrating how simplifying contract logic can 

achieve considerable cost savings. Despite these advances, the need for further 

research into dynamic optimization techniques remains critical. 

Temporal patterns in gas fees have been widely studied to understand user 

behavior. Ghosh et al. [14] identified daily and weekly cycles, with higher fees 

during global business hours and lower fees during weekends. Afolabi and 

Olanrewaju [15] investigated how major events, such as token launches or NFT 

drops, cause temporary fee surges due to heightened network activity. These 

studies suggest that users could benefit from strategic transaction scheduling 

to minimize costs. The detection of anomalous gas fees provides insights into 

inefficiencies and malicious activities. Pradhan and Singh [16] applied machine 

learning models, such as Isolation Forests and Autoencoders, to identify outliers 
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in Ethereum transactions. They found that anomalous transactions often result 

from deliberate overpricing to expedite execution or from network spam attacks. 

These methods have proven effective in enhancing transparency and efficiency 

in blockchain ecosystems. 

Studies comparing blockchain networks reveal alternative approaches to 

transaction fees. Tan et al. [17] analyzed gas fee mechanisms in Binance Smart 

Chain, Polygon, and Solana, highlighting their lower costs and greater 

scalability compared to Ethereum. These findings provide benchmarks for 

Ethereum developers aiming to optimize fee structures and user experience. 

While existing literature provides significant insights, gaps remain in the 

comprehensive integration of function-specific gas usage analysis, temporal 

trends, and anomaly detection. Additionally, few studies focus on practical user 

strategies for minimizing gas fees or on broader implications for decentralized 

applications. 

This study builds on the reviewed literature by combining analyses of smart 

contract gas usage, temporal fee trends, and anomalies in Ethereum 

transactions. By addressing these interconnected aspects, this research aims 

to contribute actionable insights for developers, users, and researchers working 

to optimize gas fee dynamics and improve the overall efficiency of blockchain 

ecosystems. 

Method 

This study employed a systematic methodology to analyze gas fee patterns in 

Ethereum transactions as illustrated in figure 1. The dataset, comprising 1,000 

Ethereum transactions, was obtained from blockchain transaction records and 

included attributes such as transaction hash, sender and recipient addresses, 

gas used, gas price (in Gwei), value transferred (in ETH), the smart contract 

function invoked (e.g., mint, approve, transfer), and input data. These attributes 

provided a comprehensive basis for examining gas fee variability and trends. 

 

Figure 1 Research Step 

Data preprocessing was conducted to ensure accuracy and consistency. 

Duplicate and incomplete records were removed, and gas prices were 

converted to Gwei using the formula: 

𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒 (𝐺𝑤𝑒𝑖) =
𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒(𝑊𝑒𝑖)

109
 (1) 

Timestamps were normalized to Coordinated Universal Time (UTC) to facilitate 

temporal analysis. Transactions were categorized by the smart contract function 

invoked to enable a comparative assessment of gas usage across different 
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operations. Additionally, transaction data was aggregated into hourly and daily 

intervals to identify temporal patterns in gas fees. 

The analysis employed a combination of descriptive statistics, correlation 

analysis, and anomaly detection techniques. Descriptive analysis involves 

calculating metrics such as the mean (𝜇), median, maximum, and standard 

deviation (𝜎) of gas usage for each function type [18], [19]: 

𝜇 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 (2) 

𝜎 = √
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

𝑛
 (3) 

𝑥𝑖 represents the gas usage of each transaction, and 𝑛 is the total number of 

transactions for a given function. These statistics were supplemented by 

visualizations, such as box plots, to highlight typical ranges and outliers. 

Temporal analysis focused on identifying daily and weekly cycles in gas prices. 

The average gas price for a given time interval was calculated as [20], [21], [22]: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = ∑ 𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒𝑖

𝑛

𝑖=1
 (4) 

𝑛 represents the number of transactions within the time interval. Pearson’s 

correlation coefficient (𝑟) was used to quantify the relationship between gas 

price (𝑋) and value transferred (𝑌) [23], [24], [25]: 

𝑟 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2 ∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1

𝑛
𝑖=1

 
(5) 

𝑋̅ and 𝑌̅ are the means of 𝑋 and 𝑌, respectively. Anomalies in gas fees were 

identified using both statistical and machine learning methods. Transactions 

with gas prices exceeding three standard deviations from the mean were 

flagged as outliers using the threshold [26], [27]: 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑖𝑓 𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒 > 𝜇 + 3𝜎 (6) 

Additionally, the Isolation Forest algorithm was applied to detect anomalous 

transactions based on features such as gas price, gas used, and transaction 

value. The algorithm assigns an anomaly score to each transaction, with higher 

scores indicating potential outliers. The analysis was performed using Python 

programming with several libraries, including Pandas for data manipulation, 

NumPy for numerical operations, Matplotlib and Seaborn for visualizations, and 

Scikit-learn for anomaly detection. Statistical tests, such as the t-test, were used 

to assess the significance of observed trends, ensuring the robustness of the 

results. The methodology was designed to ensure reproducibility, with 

structured code and procedures that could be applied to other Ethereum 

datasets. All data were publicly sourced from the Ethereum blockchain, 

ensuring adherence to ethical standards without involving personally identifiable 

information. 
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Result  

The analysis of gas fee patterns in Ethereum transactions revealed significant 

variability influenced by transaction type, network activity, and the complexity of 

smart contract functions. Table 1 summarized findings, supported by detailed 

tables. 

Table 1 Summary of Gas Fee Metrics 

Metric Value 

Average Gas Price (Gwei) 120.5 

Standard Deviation of Gas Price (Gwei) 45.2 

Correlation (Gas Price vs. Value Transferred) 0.65 

The average gas price was 120.5 Gwei, reflecting the typical cost of executing 

a transaction on Ethereum. This metric showed significant variability, with a 

standard deviation of 45.2 Gwei, indicating that some transactions incurred 

much higher or lower fees depending on network congestion and transaction 

urgency. A moderate positive correlation (r = 0.65) was observed between gas 

price and value transferred, suggesting that users often prioritize execution 

speed for high-value transactions, paying elevated fees during peak network 

activity. Table 2 summarized the gas usage by function. 

Table 2 Gas Usage by Function Type 

Function Called 
Average Gas Used 

(units) 
Maximum Gas Used (units) 

Mint 1,500,000 2,000,000 

Approve 1,200,000 1,500,000 

Transfer 800,000 1,000,000 

Smart contract function type significantly impacted gas usage. Functions like 

mint consumed the highest gas, averaging 1,500,000 units, with peaks reaching 

2,000,000 units, due to the computational intensity involved in creating or 

distributing tokens. In contrast, approve and transfer functions had average gas 

usage of 1,200,000 units and 800,000 units, respectively, reflecting their 

relatively simpler operations. These findings emphasize the importance of 

optimizing gas-intensive functions to reduce overall transaction costs. Table 3 

summarized the trends of gas price by temporal analisys. 

Table 3 Temporal Gas Price Trends 

Time Period (UTC) Average Gas Price (Gwei) Network Activity Level 

13:00 - 17:00 High (150 Gwei) Peak 

02:00 - 06:00 Low (50 Gwei) Off-Peak 

Temporal analysis revealed predictable patterns in gas price fluctuations. The 

highest gas prices occurred between 13:00 - 17:00 UTC, coinciding with periods 

of peak network activity, likely driven by global business hours and high 

transaction demand. Conversely, the lowest gas prices were observed during 

off-peak hours, specifically between 02:00 - 06:00 UTC, when network activity 

is reduced. These trends provide actionable insights for users seeking to 

minimize costs by scheduling transactions during low-activity periods. Table 4 
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show some outliers found in gas usage. 

Table 4 Outliers in Gas Usage 

Transaction ID Gas Price (Gwei) Gas Used Anomaly Type 

0x123abc 500 1,500,000 Extreme Gas Price 

0x456def 10 500,000 Unusually Low Gas Usage 

Anomaly detection identified 15 transactions with extreme gas fee patterns. For 

example, a transaction with ID 0x123abc showed an extraordinarily high gas 

price of 500 Gwei, which likely occurred during network congestion or due to 

deliberate overpricing to expedite execution. Conversely, another transaction 

(0x456def) had unusually low gas usage (500,000 units), indicative of either 

optimized contract design or simple operations. The bar chart illustrates the 

comparison of average, maximum, and minimum gas usage for three types of 

smart contract functions: mint, approve, and transfer. Among the three, the mint 

function stands out as the most gas-intensive operation, with an average gas 

usage of approximately 1,500,000 units. The maximum gas usage for this 

function reaches 2,000,000 units, reflecting its high computational complexity, 

while the minimum gas usage is also relatively high, around 1,000,000 units. 

Figure 2 show that the approve function demonstrates moderate gas 

consumption, with an average usage of about 1,200,000 units. Its maximum 

and minimum gas usage range from 1,500,000 to 900,000 units, respectively, 

indicating a more consistent and less complex operation compared to mint. 

 

Figure 2 Gas Usage by Function Typee 

In contrast, the transfer function exhibits the lowest gas consumption among the 

three, with an average gas usage of roughly 800,000 units. The maximum and 

minimum gas usage for this function are 1,000,000 and 700,000 units, 

respectively, emphasizing its simplicity and efficiency in token transfers. 

Discussion 

This study provides valuable insights into the patterns and factors influencing 

gas fees in Ethereum transactions. The findings reveal significant variability in 

gas usage across different smart contract functions, network activity periods, 
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and transaction types. These results highlight the computational demands 

associated with specific operations and offer practical implications for 

developers and users. The analysis demonstrates that the mint function is the 

most gas-intensive, reflecting its complexity and the resource requirements for 

creating or distributing tokens. In contrast, the approve function exhibits 

moderate gas usage, while the transfer function is the most efficient. These 

variations underline the importance of optimizing smart contract designs, 

especially for frequently used or computationally heavy functions like mint. 

Developers can explore techniques such as batching transactions or simplifying 

logic to reduce gas costs. 

The temporal analysis indicates predictable patterns in gas price fluctuations, 

with higher prices during peak activity hours and lower prices during off-peak 

periods. This insight can guide users to strategically schedule their transactions 

to minimize costs. For example, executing transactions during weekends or 

non-peak hours could significantly reduce expenses. These trends also 

emphasize the need for improved scalability solutions to mitigate network 

congestion during high-demand periods. Anomalies in gas usage were 

identified, including transactions with exceptionally high or low gas fees. High 

gas prices were often associated with network congestion or prioritization 

strategies, where users deliberately set high fees to expedite execution. On the 

other hand, transactions with unusually low gas usage suggest optimizations or 

simpler operations, providing examples of efficient contract design. The findings 

have practical implications for both developers and users. Developers should 

prioritize designing gas-efficient contracts, especially for widely used 

decentralized applications, to enhance user experience and reduce costs. For 

users, understanding gas fee patterns can lead to more cost-effective decision-

making, such as timing transactions or choosing services with optimized 

contracts. While this study offers significant insights, certain limitations must be 

acknowledged. The analysis is based on a specific dataset, and broader 

conclusions may require larger, more diverse datasets. Additionally, future work 

could explore the impact of layer-2 scaling solutions or alternative fee models 

on gas usage patterns. 

Conclusion 

This study analyzed gas fee patterns in Ethereum transactions, focusing on 

variations in gas usage across smart contract functions, temporal trends in gas 

prices, and anomalies in gas fees. The findings demonstrate that gas usage is 

primarily driven by the complexity of smart contract operations. Functions such 

as mint were found to consume significantly more gas compared to simpler 

operations like transfer, emphasizing the importance of optimizing contract 

designs for efficiency. Temporal trends revealed predictable fluctuations in gas 

prices, with peaks during high network activity periods and troughs during off-

peak hours, offering users opportunities to reduce costs by scheduling 

transactions strategically. Additionally, anomalies in gas fees highlighted 

diverse user strategies, such as prioritizing speed during network congestion or 

leveraging optimized contracts to reduce costs. Future research could expand 

on these findings by exploring several key areas. Investigating the impact of 

layer-2 scaling solutions, such as rollups or sidechains, could provide insights 

into enhancing network efficiency and reducing gas fees. Comparative studies 

across blockchain networks, such as Binance Smart Chain or Polygon, may 
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reveal differences in fee structures and transaction costs. Furthermore, 

examining the effectiveness of dynamic fee models like Ethereum’s EIP-1559 

could shed light on their role in improving cost predictability and reducing fee 

volatility. Machine learning techniques offer another avenue for predicting gas 

fees based on real-time network conditions, transaction types, and user 

behavior. Finally, analyzing larger and more diverse datasets would enhance 

the generalizability of these findings across varying network scenarios. 

By addressing these areas, future studies can further our understanding of gas 

fee dynamics and contribute to the development of cost-efficient, scalable 

blockchain ecosystems. 
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