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ABSTRACT 

This study investigates the application of various clustering techniques on a 

metaverse transaction dataset to identify patterns and groupings. The clustering 

algorithms evaluated include K-Means, DBSCAN, Gaussian Mixture Model (GMM), 

Mean Shift, Spectral Clustering, and Birch. The performance of these algorithms is 

assessed using three metrics: Silhouette Score, Davies-Bouldin Index, and Calinski-

Harabasz Index. Among these algorithms, K-Means demonstrated the best overall 

performance, achieving the highest Silhouette Score (0.4702) and Calinski-Harabasz 

Index (151946.29), as well as the lowest Davies-Bouldin Index (0.6600), indicating 

well-defined and compact clusters. DBSCAN, while flexible, showed lower 

performance with a Silhouette Score of 0.1673, a Davies-Bouldin Index of 1.0084, 

and a Calinski-Harabasz Index of 4231.19. GMM achieved a Silhouette Score of 

0.2453, a Davies-Bouldin Index of 1.3626, and a Calinski-Harabasz Index of 

23011.20. Spectral Clustering had a Silhouette Score of 0.1668, a Davies-Bouldin 

Index of 2.0986, and a Calinski-Harabasz Index of 11830.24. Birch achieved a 

Silhouette Score of 0.2363, a Davies-Bouldin Index of 1.4967, and a Calinski-

Harabasz Index of 21375.76. Mean Shift could not provide valid performance metrics. 

Visualizations, including histograms, box plots, and count plots, provided additional 

insights into the distribution of numerical features and cluster characteristics. This 

study highlights the need for tailored clustering approaches and suggests future 

research directions in hybrid models as well as the impact of feature selection and 

scaling methods on clustering outcomes. 

Keywords Metaverse, Blockchain Transactions, Clustering Techniques, User 

Behavior Analysis, Data Mining in Virtual Worlds. 

INTRODUCTION 

The rapid development of blockchain technology and the growing popularity of 

metaverse platforms have revolutionized digital interactions and transactions. 

Blockchain ensures secure, transparent, and immutable transaction records, 

while the metaverse provides a virtual environment where users can interact, 

socialize, and conduct business [1]. As these technologies converge, analyzing 

transaction patterns in the metaverse becomes crucial for understanding user 

behavior, identifying potential risks, and optimizing system performance. 

Clustering, a machine learning technique, plays a significant role in analyzing 

large datasets by grouping similar data points based on their characteristics [2]. 

This research aims to explore and evaluate the effectiveness of various 

clustering algorithms in identifying transaction patterns within the metaverse 

environment. The clustering techniques evaluated include K-Means, DBSCAN, 

Gaussian Mixture Model (GMM), Mean Shift, Spectral Clustering, and Birch. 

Current research has explored the application of clustering algorithms in various 
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domains, such as finance, healthcare, and e-commerce, to uncover hidden 

patterns and optimize processes [3]. In the context of blockchain transactions 

and the metaverse, most studies have focused on security, scalability, and 

interoperability [4]. However, the integration of clustering techniques to analyze 

transaction patterns in the metaverse remains an emerging area with significant 

potential. 

K-Means is a widely used clustering method known for its simplicity and 

efficiency but requires prior knowledge of the number of clusters [5]. DBSCAN, 

a density-based algorithm, can identify clusters with arbitrary shapes but 

struggles with varying density levels [6]. GMM, a probabilistic model, can 

capture the underlying data distribution but is computationally intensive [7]. 

Mean Shift, a mode-seeking algorithm, does not require a predefined number 

of clusters but is sensitive to bandwidth selection [8]. Spectral Clustering 

leverages graph theory to identify clusters but can be computationally 

demanding [9]. Birch, a hierarchical clustering algorithm, is efficient for large 

datasets but may struggle with clusters of varying sizes and densities [10]. 

Despite advancements in clustering techniques, there is a significant gap in 

applying these algorithms to blockchain transaction data in the metaverse [11]. 

The unique characteristics of the metaverse, such as its dynamic environment, 

diverse user activities, and complex transaction types, present challenges that 

existing clustering methods have not fully addressed [12]. Furthermore, the lack 

of comparative studies on the performance of various clustering algorithms in 

this specific context limits our understanding of their strengths and weaknesses. 

This research aims to fill this gap by systematically evaluating several clustering 

algorithms on metaverse transaction data. Utilizing the Silhouette Score, 

Davies-Bouldin Index, and Calinski-Harabasz Index, this study provides a 

comprehensive analysis of the quality and density of clusters achieved by each 

algorithm [13]. Additionally, visualizations such as histograms, box plots, and 

count plots are used to illustrate the distribution of numerical features and the 

characteristics of the formed clusters. 

Literature Review  

Research on analyzing transaction patterns in the metaverse using clustering 

techniques is rapidly growing along with the increased use of blockchain 

technology and virtual worlds. The metaverse, as a virtual world supported by 

blockchain technology, presents new challenges in understanding user 

behavior and transaction patterns [14]. Therefore, this study aims to investigate 

effective clustering techniques for analyzing transaction patterns in the 

metaverse, which can provide valuable insights for developers and 

administrators of metaverse platforms. 

One common approach in transaction pattern analysis is the use of clustering 

algorithms. Clustering techniques aim to group data based on feature similarity, 

enabling the identification of hidden patterns and structures within complex data 

[15]. Several clustering techniques used in this study include K-Means, 

DBSCAN, GMM, Mean Shift, Spectral Clustering, and Birch [5], [6], [7], [8], [9], 

[10].  

K-Means is one of the most popular clustering techniques, used to group data 

based on feature similarity. Research by Zhang et al. demonstrated that K-

Means is effective in identifying groups of users with similar transaction 

characteristics on e-commerce platforms [16]. However, K-Means has 
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weaknesses in handling non-spherical data or data with significant outliers. 

Additionally, K-Means requires the prior determination of the optimal number of 

clusters, which is often difficult to predict accurately. 

DBSCAN is a density-based clustering algorithm capable of finding clusters with 

arbitrary shapes and ignoring noise. Research by Pranata et al. introduced 

DBSCAN as an algorithm that can overcome the limitations of K-Means in 

handling outliers and irregularly shaped clusters [17]. In blockchain transaction 

analysis, the use of DBSCAN has been discussed by Ding et al., who 

demonstrated the algorithm's ability to detect suspicious activities within 

blockchain networks [18]. GMM is a probabilistic clustering approach that 

assumes data originates from a mixture of several Gaussian distributions. 

Research by Wang and Jiang discussed the application of GMM in various 

domains, including pattern recognition and complex data modeling. GMM offers 

flexibility in identifying clusters of different shapes and sizes [19]. In the context 

of blockchain transactions, GMM can be used to identify the probabilistic 

distribution of various types of transactions, providing insights into more subtle 

and varied transaction patterns. 

Mean Shift is a centroid-based clustering algorithm that does not require prior 

determination of the number of clusters. Jeon et al. introduced Mean Shift as a 

non-parametric technique for cluster analysis [20]. Mean Shift can identify 

clusters with arbitrary shapes and does not require initial assumptions about 

data distribution. However, research on the use of Mean Shift in blockchain 

transaction analysis is still limited and requires further exploration to understand 

its potential and limitations. Spectral Clustering uses a spectral approach to 

group data based on the eigenvalues of the similarity matrix. Zhang et al. 

demonstrated that Spectral Clustering is effective for data with complex cluster 

structures [21]. Spectral Clustering transforms data into a simpler form using 

spectral transformation, allowing the identification of clusters that might not be 

apparent in high-dimensional space. In the context of the metaverse, Spectral 

Clustering can help identify groups of users based on their interactions and 

activities, providing insights into communities and behavioral patterns within the 

virtual world. 

Birch is a hierarchical clustering algorithm well-suited for large datasets. Lang 

and Schubert demonstrated that Birch can efficiently cluster data by leveraging 

its hierarchical structure [22]. Birch employs an iterative approach to reduce and 

cluster data, enabling large-scale data grouping while maintaining 

computational efficiency. The use of Birch in blockchain transaction analysis 

allows for clustering large volumes of data with complex structures. Despite the 

use of various clustering algorithms for analyzing transaction patterns across 

different domains, there are several research gaps that need to be addressed. 

One major gap is the lack of studies combining multiple clustering techniques 

for transaction analysis in the metaverse. Most research focuses on one or two 

algorithms without comprehensively evaluating the performance of various 

techniques. Additionally, the exploration of algorithms like Mean Shift and Birch 

in the context of blockchain transaction analysis remains limited, necessitating 

further research to understand their potential and practical applications. 

This research contributes by evaluating the performance of various clustering 

algorithms in identifying transaction patterns within the metaverse. By 

combining several clustering techniques and assessing their performance using 
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metrics such as the Silhouette Score, Davies-Bouldin Index, and Calinski-

Harabasz Index, this study provides new insights into user behavior within 

complex digital environments. The findings are expected to offer guidance to 

developers and administrators of metaverse platforms in optimizing user 

experience and enhancing transaction security. 

Method 

This research follows a systematic methodological flow as illustrated in figure 1. 

The process consists of several main stages: data collection, data 

preprocessing, feature engineering, model development, model evaluation and 

validation, and result interpretation. Each stage is detailed as follows. 

 

Figure 1 Research Step 

The first stage of this research is the collection of blockchain transaction data in 

the metaverse. This data includes information on user transactions such as 

transaction time, transaction amount, login frequency, session duration, and risk 

scores. The data is sourced from various relevant sources to ensure an 

accurate representation of transaction activity in the metaverse. 

After data collection, the next stage is data preprocessing. This stage involves 

several steps to ensure optimal data quality. These steps include handling 

missing data, removing outliers, and normalizing the data. Incomplete or 

erroneous data can affect the analysis results; therefore, these steps are crucial 

for producing clean and ready-for-analysis data. 

Feature Engineering is the process through which important features are 

identified and extracted from raw data [23]. In this study, the features selected 

for analysis include 'hour_of_day', 'amount', 'login_frequency', 

'session_duration', and 'risk_score'. These features were chosen based on their 

relevance to transaction patterns in the metaverse. The feature engineering 

process also involves transforming and creating new features that can help 

improve model accuracy. 

The model development stage involves applying various clustering techniques 
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to group the data. The clustering techniques used in this study include K-Means, 

DBSCAN, GMM, Mean Shift, Spectral Clustering, and Birch [5], [6], [7], [8], [9], 

[10]. Each technique employs a different approach to clustering data. K-Means 

clusters data by minimizing the distance within clusters and maximizing the 

distance between clusters [5]. DBSCAN clusters data based on density, 

allowing for the identification of clusters with irregular shapes [6]. GMM 

assumes that data comes from a mixture of several normal distributions and 

clusters data based on these distributions [7]. Mean Shift clusters data by 

identifying areas of high density within the feature space [8]. Spectral Clustering 

uses the spectrum (eigenvalues) of the data similarity matrix for clustering [9]. 

Birch builds a hierarchy of clusters by iteratively partitioning the data [10]. 

After the models are developed, the next stage is evaluation and validation. 

Three key metrics are used to assess the quality of the clustering results: 

Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz Index [13]. The 

Silhouette Score measures how similar an object is to its own cluster compared 

to other clusters [24]. The score ranges from -1 to 1, with higher values 

indicating better clustering. This value is calculated using the following formula: 

s(xi) =  
b(xi) − a(xi)

max
 

{a(xi), b(xi)}
 (1) 

Note: where 𝑎(𝑥𝑖) is the average distance between 𝑥𝑖 and all other points in its 

own cluster, and 𝑏(𝑥𝑖) is the average distance between 𝑥𝑖 and all points in the 

nearest neighboring cluster. 

The Davies-Bouldin Index measures how similar one cluster is to another, with 

lower values indicating better clustering [25]. The formula is: 

DB =  
1

n
∑ maxj≠i

n

i=1
(

σi + σj

d(ci +  cj)
) (2) 

Note: where 𝜎 is the average distance within clusters, and 𝑑(𝑐𝑖 + 𝑐𝑗) is the 

distance between the cluster centers 𝑐𝑖 and 𝑐𝑗. 

The Calinski-Harabasz Index measures the ratio between the total dispersion 

between clusters and the dispersion within clusters [26]. Higher values indicate 

better clustering. The formula is: 

CH =  
(N−k)

(k−1)
 .

∑ |Ci|| .||μi−μ||2k
i=1

∑ ∑ ||x− 
xϵCi

μi||2k
i=1

 (3) 

Note: where 𝑁 is the total number of samples, 𝑘 is the number of clusters, 𝐶𝑖 is 

the 𝑖-th cluster, 𝜇𝑖 is the centroid of the 𝑖-th cluster, and 𝜇 is the centroid of all 

data. 

The final stage of the methodology is result interpretation. Based on the 

evaluation scores obtained, this research interprets the discovered transaction 

patterns, identifies the unique characteristics of each cluster, and draws 

conclusions that provide in-depth insights into user behavior in the metaverse. 

This interpretation is crucial for understanding the practical implications of the 

findings and how these patterns can be applied in real-world contexts. This 
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structured methodology enables the research to not only identify significant 

transaction patterns but also ensure that the results are valid and reliable. By 

using various clustering techniques and evaluation metrics, this study offers a 

comprehensive and detailed analysis of blockchain transactions in the 

metaverse. 

Result 

Figure 2 displays histograms for the numerical features in the metaverse 

transaction dataset, including 'hour_of_day', 'amount', 'login_frequency', 

'session_duration', and 'risk_score'. These histograms provide an overview of 

the distribution of each numerical variable. For example, the histogram for 

'hour_of_day' shows the frequency of transactions occurring at different times 

of the day, indicating peak hours of user activity. The histogram for 'amount' 

illustrates the distribution of transaction amounts, highlighting the most common 

transaction sizes. Additionally, the histogram for 'login_frequency' depicts how 

often users log into the platform, revealing patterns of user engagement. 

 

Figure 2 Histograms for Numerical Features 

The histogram for 'session_duration' shows the distribution of session 

durations, indicating how long users typically remain active during a session. 

Lastly, the histogram for 'risk_score' illustrates the distribution of risk scores 

assigned to transactions, providing insights into the overall risk profile of the 

dataset. These visualizations are crucial for understanding the central 

tendencies, dispersion, and skewness of numerical features, serving as an 

important preliminary step in the interpretation of clustering results. Figure 3 

presents boxplots for the numerical features, segmented by cluster. Boxplots 

are used to summarize the distribution of data within each cluster for features 

such as 'amount', 'login_frequency', 'session_duration', and 'risk_score'. The 

'amount' boxplot shows the median, quartiles, and outliers of transaction 

amounts for each cluster, revealing differences in transaction behavior between 

clusters. The 'login_frequency' boxplot displays how often users from different 

clusters log into the platform, highlighting variations in user engagement among 

clusters. Additionally, the 'session_duration' boxplot shows how long users from 

various clusters typically remain active in a single session, indicating differences 
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in user activity levels. 

 

Figure 3 Boxplots by Cluster 

The 'risk_score' boxplot illustrates the distribution of risk scores within each 

cluster, providing insights into the risk profile of transactions across different 

clusters. Analyzing these boxplots is crucial for understanding the 

characteristics and behavior of each cluster, facilitating the interpretation of 

clustering results and their implications. Figure 4 displays countplots for the 

numerical features, segmented by cluster. Countplots show the number of data 

points in each category, divided by cluster. The 'hour_of_day' countplot shows 

the number of transactions occurring at various times of the day for each cluster, 

revealing peak activity times for each cluster. The 'amount' countplot depicts the 

frequency of different transaction amounts within each cluster, indicating 

common transaction sizes per cluster. Additionally, the 'login_frequency' 

countplot illustrates the number of different login frequencies within each 

cluster, providing insights into user engagement per cluster. 
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Figure 4 Countplots by Cluster 

The 'session_duration' countplot displays the number of different session 

durations for each cluster, indicating the typical session length per cluster. 

Finally, the 'risk_score' countplot shows the number of different risk scores 

within each cluster, highlighting the risk profile per cluster. These countplots 

help visualize the distribution of numerical features across clusters, making it 

easier to identify patterns and differences among clusters. 

This study evaluated the performance of various clustering algorithms on the 

metaverse transaction dataset. The evaluation was carried out using three 

primary metrics: Silhouette Score, Davies-Bouldin Index, and Calinski-

Harabasz Index. The K-Means clustering algorithm, configured with three 

clusters, achieved a Silhouette Score of 0.470, a Davies-Bouldin Index of 0.660, 

and a Calinski-Harabasz Index of 151946.29. These metrics indicate that K-

Means forms well-defined clusters with clear separation. Visualizations of the 

clustering results for K-Means can be seen in figure 5 and figure 6, which show 

clustering of 'Amount vs. Session Duration' and 'Login Frequency vs. Risk 

Score,' respectively (see figure 5 and figure 6). 

  

Figure 5 K-Means Clustering of Amount vs. Session 

Duration 

Figure 6 K-Means Clustering of Login Frequency vs. 

Risk Score 
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DBSCAN, with eps=0.5 and min_samples=5, yielded a Silhouette Score of 

0.167, a Davies-Bouldin Index of 1.008, and a Calinski-Harabasz Index of 

4231.19. These results indicate that DBSCAN forms clusters that are less well-

defined compared to K-Means. Figure 7 and figure 8 illustrate the clustering 

results for DBSCAN for 'Amount vs. Session Duration' and 'Login Frequency vs. 

Risk Score,' respectively (see figure 7 and  figure 8) 

  

Figure 7 DBSCAN Clustering of Amount vs. Session 

Duration 

Figure 8 DBSCAN Clustering of Login Frequency vs. Risk 

Score 

GMM clustering, using three components, produced a Silhouette Score of 

0.245, a Davies-Bouldin Index of 1.362, and a Calinski-Harabasz Index of 

23011.20. Although GMM performed better than DBSCAN, it still did not achieve 

the high cluster quality observed with K-Means. Figure 9 and figure 10 display 

the GMM clustering results for 'Amount vs. Session Duration' and 'Login 

Frequency vs. Risk Score,' respectively (see figure 9 and figure 10). 

  

Figure 9 GMM Clustering of Amount vs. Session Duration Figure 10 GMM Clustering of Login Frequency vs. Risk Score 

Mean Shift clustering did not produce valid clusters for evaluation, rendering the 

Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz Index 

inapplicable. However, figure 11 and figure 12 provide visual insights into the Mean 

Shift clustering results for 'Amount vs. Session Duration' and 'Login Frequency vs. 

Risk Score,' respectively (see figure 11 and  figure 12). 
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Figure 11 Mean Shift Clustering of Amount vs. Session 

Duration 

Figure 12 Mean Shift Clustering of Login Frequency vs. 

Risk Score 

Spectral clustering, configured with three clusters, yielded a Silhouette Score of 

0.167, a Davies-Bouldin Index of 2.099, and a Calinski-Harabasz Index of 

11830.24. These metrics indicate that Spectral clustering forms less well-defined 

clusters compared to K-Means and GMM. Figure 13 and figure 14 illustrate the 

clustering results for 'Amount vs. Session Duration' and 'Login Frequency vs. Risk 

Score,' respectively (see Figure 13 and figure 14). 

  

Figure 13 Spectral Clustering of Amount vs. Session 

Duration 

Figure 14 Spectral Clustering of Login Frequency vs. Risk 

Score 

Finally, Birch clustering with three clusters produced a Silhouette Score of 0.236, 

a Davies-Bouldin Index of 1.497, and a Calinski-Harabasz Index of 21375.76. Birch 

clustering performed better than DBSCAN and Spectral clustering but did not 

achieve the quality seen with K-Means. Figure 15 and figure 16 illustrate the Birch 

clustering results for 'Amount vs. Session Duration' and 'Login Frequency vs. Risk 

Score,' respectively (see Figure 15 and figure 16). 
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Figure 15 Birch Clustering of Amount vs. Session 

Duration 

Figure 16 Birch Clustering of Login Frequency vs. Risk Score 

Overall, the K-Means clustering algorithm achieved the highest performance 

across all evaluation metrics, indicating well-defined clusters with minimal 

scatter within clusters. DBSCAN and Spectral Clustering produced lower-quality 

clusters, while Birch provided intermediate results. Mean Shift clustering did not 

yield valid clusters for evaluation. The table 1 below summarizes the evaluation 

metrics for each clustering method: 

Table 1 Clustering Evaluation Metrics 

Model Silhouette Score Davies-Bouldin Index 
Calinski-Harabasz 

Index 

K-Means 0.470 0.660 151946.291 

DBSCAN 0.167 1.008 4231.192 

GMM 0.245 1.362 23011.195 

Mean Shift N/A N/A N/A 

Spectral 0.166 2.098 11830.240 

Birch 0.236 1.496 21375.764 

The performance of the Apriori and FP-Growth algorithms was thoroughly 

evaluated using several key metrics, including execution time, memory usage, 

support, confidence, and lift. The results of this evaluation were presented in 

both tabular and graphical formats to provide a comprehensive overview of the 

algorithms' performance. 

Performance metrics for each algorithm were compiled and presented to clearly 

compare their efficiency and effectiveness. Execution time and memory usage 

were critical indicators of computational efficiency. The Apriori algorithm had an 

execution time of 4.08 seconds and a memory usage of 45.36 MiB, while the 

FP-Growth algorithm exhibited an execution time of 4.15 seconds and a 

significantly lower memory usage of 0.08 MiB. These metrics were visually 

represented through bar charts, highlighting the differences in computational 

resources required by each algorithm. 
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The detailed results included specific association rules generated by each 

algorithm, along with their corresponding support, confidence, and lift values. 

For instance, the Apriori algorithm produced rules such as {Alfajores} -> 

{Coffee} with a support of 0.018885, confidence of 0.520000, and lift of 

1.087090. Other notable rules included {Brownie} -> {Coffee}, {Cake} -> 

{Coffee}, and {Juice} -> {Coffee}, each with varying levels of support, 

confidence, and lift. Visualizations such as bar charts and scatter plots were 

used to illustrate these results, clearly depicting the relationships between 

different items. For example, scatter plots of support versus confidence and lift 

versus confidence were created for both algorithms to visualize the distribution 

and strength of the generated rules. The FP-Growth algorithm generated similar 

association rules, such as {Scone} -> {Coffee} with a support of 0.017829, 

confidence of 0.519231, and lift of 1.085482. Additional rules included 

{Sandwich} -> {Coffee}, {Medialuna} -> {Coffee}, and {Pastry} -> {Coffee}. The 

highest confidence observed among these rules was 0.575693 for {Medialuna} 

-> {Coffee}, with a corresponding lift of 1.203519. These results were also 

visualized through various plots, demonstrating the effectiveness of FP-Growth 

in identifying strong associations within the dataset. 

A comparative analysis determined which algorithm performed best overall and 

in specific areas. The analysis considered both the efficiency and the quality of 

the generated rules. The Apriori algorithm demonstrated slightly faster 

execution times, but the FP-Growth algorithm excelled in memory efficiency, 

making it a more practical choice for larger datasets. Both algorithms generated 

high-quality rules with similar support, confidence, and lift values, indicating their 

robustness in market basket analysis. 

The comparative analysis was visually represented through bar charts and 

scatter plots, facilitating an intuitive understanding of the differences and 

similarities between the two algorithms. The bar charts comparing execution 

time and memory usage highlighted FP-Growth's significant advantage in 

memory efficiency. Scatter plots comparing support versus confidence and lift 

versus confidence for both algorithms showcased the quality of the rules 

generated, with both algorithms producing strong and reliable associations. 

Conclusion 

This study provides a comprehensive analysis of various clustering algorithms 

on a metaverse transaction dataset, evaluating their performance using 

Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz Index. The 

algorithms assessed include K-Means, DBSCAN, GMM, Mean Shift, Spectral 

Clustering, and Birch. The results indicate that K-Means demonstrates the best 

overall performance, with the highest Silhouette Score (0.4702) and Calinski-

Harabasz Index (151946.29), as well as the lowest Davies-Bouldin Index 

(0.6600). This suggests that the clusters formed by K-Means are well-defined 

and compact. DBSCAN, while flexible in identifying clusters of varying shapes, 

showed lower performance metrics, reflecting challenges in parameter tuning 

and managing density variations within the dataset. GMM and Birch displayed 

intermediate performance, with GMM achieving a Silhouette Score of 0.2453 

and Birch scoring 0.2363. Spectral Clustering also demonstrated lower 

effectiveness, with a high Davies-Bouldin Index (2.0986) and a Calinski-

Harabasz Index of 11830.24. 
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This study highlights the importance of choosing a clustering algorithm that 

aligns with the specific characteristics of the dataset and the analysis objectives. 

The visualizations conducted, including histograms, boxplots, and countplots, 

provide additional insights into the distribution of numerical features and cluster 

characteristics, complementing the quantitative results. Future research could 

explore hybrid models that combine different clustering approaches or integrate 

domain knowledge to improve clustering quality. Additionally, further 

investigation into the impact of feature selection and scaling methods on 

clustering performance would be valuable for enhancing clustering outcomes. 
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