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ABSTRACT 

Blockchain smart contracts are pivotal to decentralized applications, yet their security 

remains a critical challenge. This study analyzes a dataset of 1,000 smart contracts 

to investigate known vulnerabilities, audit practices, and exploit patterns. The results 

reveal that audited contracts are significantly less prone to exploitation, with 75% 

exhibiting no exploit history compared to 55% of non-audited contracts. "Integer 

Overflow" and "Unchecked Call" were identified as the most prevalent vulnerabilities, 

contributing to 60% and 50% exploit rates, respectively. The study highlights the 

importance of transparent audit reporting, as contracts without available reports were 

exploited in 35% of cases. Additionally, hidden vulnerabilities in ostensibly secure 

contracts underscore the evolving sophistication of blockchain threats. This research 

emphasizes the need for robust security practices, including stricter coding standards, 

comprehensive audits, and advanced vulnerability detection techniques such as 

formal verification and machine learning. Future works aim to integrate security tools 

into development workflows and foster industry-wide collaboration to standardize 

auditing practices, thereby enhancing the security and trustworthiness of blockchain 

ecosystems. 

Keywords Blockchain Security, Smart Contract Vulnerabilities, Audit Practices in 

Blockchain, Exploit Detection, Machine Learning for Blockchain 

INTRODUCTION 

Blockchain technology has emerged as a revolutionary solution for 

decentralized applications, offering transparency, immutability, and trustless 

interactions [1]. Since its inception, blockchain has disrupted traditional 

systems, empowering sectors like finance, supply chain, and healthcare [2], [3]. 

At the core of many blockchain platforms are smart contracts (self-executing 

programs that automate agreements and transactions without intermediaries) 

[4]. This automation reduces operational costs and eliminates human error, 

making smart contracts an integral component of decentralized systems [5]. 

Despite their potential, smart contracts are often plagued by security 

vulnerabilities, which have led to significant financial losses and undermined 

trust in blockchain systems [6]. High-profile incidents, such as the 2016 DAO 

hack, which resulted in a loss of $60 million, and the 2017 Parity wallet breach, 

where $150 million worth of cryptocurrency was frozen, highlight the 

catastrophic consequences of exploiting vulnerabilities in smart contracts. 

These cases underscore the urgent need for robust security measures during 

the development, deployment, and auditing of smart contracts. 

 

The vulnerabilities in smart contracts often arise from coding errors, inadequate 

testing, or overlooked edge cases [7]. Common issues include "Integer 

Overflow," where arithmetic operations exceed their storage limit, and 

"Unchecked Call," where external contract calls do not validate return values, 

leading to unintended behavior [8]. These vulnerabilities are further 
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exacerbated by the absence of comprehensive auditing practices and the lack 

of transparency in reporting audit findings. Such gaps leave many smart 

contracts exposed to sophisticated and evolving attack vectors. This study aims 

to address these challenges by systematically analyzing a dataset of 1,000 

blockchain smart contracts to uncover patterns of known vulnerabilities and 

exploit histories. The research investigates the prevalence of vulnerabilities, 

evaluates the effectiveness of auditing practices, and examines the role of 

transparency in mitigating exploit risks. By focusing on empirical evidence, this 

study sheds light on critical areas for improvement in the blockchain ecosystem. 

The findings of this research offer actionable insights for various stakeholders. 

Developers can use these insights to adopt stricter coding standards and 

automated testing tools, while auditors can refine their methodologies to better 

detect and mitigate vulnerabilities. Researchers can leverage the results to 

explore innovative approaches, such as machine learning and formal 

verification, to enhance the security of smart contracts. Ultimately, this study 

seeks to contribute to the development of a robust and trustworthy blockchain 

ecosystem capable of withstanding the evolving threats posed by malicious 

actors. 

Literature Review  

Blockchain security has been a focus of extensive research, with numerous 

studies addressing the vulnerabilities and challenges of smart contracts. Luu et 

al. [9] introduced Oyente, a symbolic execution tool for analyzing Ethereum 

smart contracts, demonstrating its ability to detect common vulnerabilities like 

reentrancy and integer overflows. This work laid the foundation for automated 

vulnerability detection in smart contracts. Similarly, Kalra et al. [10] proposed 

ZEUS, a framework leveraging formal verification to ensure the correctness and 

security of smart contracts, showcasing the potential of formal methods in 

mitigating vulnerabilities. The significance of auditing in blockchain security has 

been emphasized in several works. Grishchenko et al. [11] conducted a formal 

verification of the Ethereum Virtual Machine (EVM) bytecode to identify logical 

flaws and ensure functional correctness. Their findings highlighted the 

importance of bytecode-level audits in preventing vulnerabilities that might 

escape higher-level inspections. Moreover, Tsankov et al. [12] introduced 

Securify, a scalable analysis tool for Ethereum smart contracts, which provided 

practical insights into contract vulnerabilities and compliance with best 

practices. Nikolic et al. [13] developed MAIAN, a tool designed to detect 

vulnerabilities related to frozen funds and leakage of Ether in smart contracts. 

Their study showcased the prevalence of these issues in Ethereum, 

emphasizing the need for automated detection tools to cover a broader range 

of security flaws. Similarly, Chu et al. [14] proposed SMARTSHIELD, an 

approach to decompile and analyze smart contracts for vulnerabilities at the 

source-code level, bridging the gap between developer-written code and 

bytecode analysis. 

While these tools and frameworks have significantly advanced the field, 

challenges remain in ensuring transparency and accessibility of audit reports. 

Liu et al. [15] examined the impact of audit transparency on user trust and 

developer accountability, concluding that publicly available audit reports not 

only reduce the likelihood of exploits but also enhance confidence in blockchain 

ecosystems. Moreover, Durieux et al. [16] conducted a large-scale empirical 
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study of Ethereum contracts, revealing that many vulnerabilities persist despite 

the availability of advanced tools, primarily due to developer negligence or lack 

of awareness. Recent studies have also explored the role of machine learning 

in detecting vulnerabilities. Chen et al. [17] developed a deep learning model to 

classify and predict smart contract vulnerabilities, demonstrating high accuracy 

and scalability. Huang et al. [18] extended this work by incorporating transfer 

learning techniques to analyze cross-platform vulnerabilities, highlighting the 

adaptability of machine learning for diverse blockchain ecosystems. Despite 

these advancements, gaps persist in addressing the dynamic nature of 

blockchain threats. Continuous updates to security tools, combined with 

proactive research into emerging attack vectors, are essential to safeguarding 

the integrity of smart contracts. This study builds upon these related works by 

providing an empirical analysis of real-world contracts, examining the interplay 

between audit practices, vulnerability patterns, and exploit histories to offer 

actionable recommendations for enhancing blockchain security. 

Method 

This study employed a multi-step methodological approach to analyze the 

security of blockchain smart contracts. (see figure 1) The dataset consisted of 

1,000 Ethereum smart contracts, sourced from repositories like Etherscan and 

OpenZeppelin. Contracts were selected based on their activity levels, diversity 

in types, and availability of audit information. Key attributes collected included 

contract addresses, known vulnerabilities such as "Integer Overflow" and 

"Unchecked Call," audit status, and exploit histories. Missing values, such as 

audit report URLs, were handled by categorizing contracts into "Report 

Available" and "Report Missing." Terminologies like "Overflow" were 

standardized to "Integer Overflow" to ensure consistency in the analysis. 

 

 

 

 

 

 

 

 

Figure 1 Research Step 

To understand the relationship between vulnerabilities, audit practices, and 

exploit histories, statistical analyses were performed. The chi-square test was 

applied to determine the association between categorical variables, such as 

audit status and exploit occurrence. The formula for the chi-square statistic 𝑋2 

is [19], [20], [21]: 

𝑋2 = ∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
 (1) 
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𝑂𝑖 is the observed frequency and 𝐸𝑖 is the expected frequency under the null 

hypothesis. The degrees of freedom for the test are calculated as: 

𝑑𝑓 = (𝑟 − 1) × (𝑐 − 1) (2) 

𝑟 is the number of rows and 𝑐 is the number of columns in the contingency table.  

Additionally, the relative risk (𝑅𝑅) was used to compare the likelihood of 

exploitation between audited and non-audited contracts:  

𝑅𝑅 =
𝑃(𝐸𝑥𝑝𝑙𝑜𝑖𝑡 | 𝑁𝑜𝑡 𝐴𝑢𝑑𝑖𝑡𝑒𝑑)

𝑃(𝐸𝑥𝑝𝑙𝑜𝑖𝑡 | 𝐴𝑢𝑑𝑖𝑡𝑒𝑑)
 (3) 

𝑃 represents the conditional probability of exploitation given the audit status. 

Confidence intervals (CIs) for (𝑅𝑅) were computed using the formula: 

𝐶𝐼 = exp (𝐼𝑛(𝑅𝑅) ± 𝑍 .  √
1

𝑛1
+

1

𝑛2
) (4) 

𝑍 is the critical value for the desired confidence level (e.g., 1.96 for 95% CI), 𝑛1 

is the number of audited contracts, and 𝑛2 is the number of non-audited 

contracts. 

To predict the likelihood of exploitation, a decision tree classifier was employed. 

The Gini impurity (𝐺) was used as the splitting criterion in the tree: 

𝐺 = 1 − ∑ 𝑝𝑖
2

𝑘

𝑖=1

 (5) 

𝑝𝑖 is the proportion of samples belonging to the class 𝑖, and 𝑘 is the number of 

classes. 

The dataset was divided into training (80%) and testing (20%) subsets, and 

hyperparameter tuning was conducted using grid search. Metrics such as 

accuracy (𝐴), precision (𝑃), recall (𝑅) and F1-score 𝐹1 were calculated to 

evaluate model performance [22], [23], [24]: 

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

𝑃 =
(𝑇𝑃) 

(𝑇𝑃 + 𝐹𝑃)
 (7) 

𝑅 =
(𝑇𝑃) 

(𝑇𝑃 + 𝐹𝑁)
 (8) 
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𝐹1 = 2 ∙
𝑃 ∙ 𝑅

𝑃 + 𝑅
 (9) 

𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁represent true positives, true negatives, false positives, and 

false negatives, respectively. Numerical features such as transaction counts 

were normalized using min-max scaling to ensure comparability [25], [26], [27]: 

𝑥′ =
𝑥 − min (𝑥)

𝑚𝑎𝑠(𝑥) − min (𝑥)
 (10) 

𝑥 is the original value, and min (𝑥) and max (𝑥) are the minimum and maximum 

values in the dataset. 

To visualize the findings, bar charts were used to show the distribution of 

vulnerabilities, scatter plots illustrated the relationship between audit status and 

exploit rates, and heatmaps depicted correlations among features. Cross-

validation 𝑘 = 10 was applied to ensure the robustness of the results. 

Result and Discussion 

The dataset consists of 1,000 blockchain smart contracts with key attributes 

such as contract address, known vulnerabilities, audit status, audit report URL, 

and exploit history. Among the contracts, 65% had no known vulnerabilities, 

20% were associated with "Integer Overflow," 10% exhibited "Unchecked Call" 

vulnerabilities, and 5% contained other miscellaneous vulnerabilities (see table 

1). A significant portion of the dataset (47%) had missing audit report URLs, 

posing challenges for transparency and security analysis. 

Table 1 Summary of Vulnerabilities 

Vulnerability Type Percentage of Contracts Exploited (%) 

No Known Vulnerabilities 65% 10% 

Integer Overflow 20% 60% 

Unchecked Call 10% 50% 

Other Vulnerabilities 5% - 

The summary of Vulnerabilities is represented in figure 2. 
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Figure 2 Distribution of Vulnerabilities and Exploits 

A comparative analysis (see table 2) revealed that audited contracts were 

significantly less likely to be exploited than non-audited ones. Specifically, 75% 

of audited contracts had no exploit history, while 25% experienced exploitation, 

often due to undetected vulnerabilities. In contrast, 45% of non-audited 

contracts were exploited, with a majority of these cases linked to "Integer 

Overflow" vulnerabilities. 

Table 2 Audit and Exploit Correlation 

Audit Status Percentage of Contracts Exploited (%) 

Audited 53% 25% 

Not Audited 47% 45% 

The Audit and Exploit Correlation is represented in figure 3. 

 

Figure 3 Audit and Exploit Correlation 

The analysis of vulnerability types showed that "Integer Overflow" was present 

in 200 contracts, 60% of which were exploited, primarily targeting financial 
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transactions. Similarly, "Unchecked Call" vulnerabilities were found in 100 

contracts, with 50% exploited due to inadequate input validation. Interestingly, 

10% of contracts with no reported vulnerabilities still had exploit histories, 

indicating the presence of hidden vulnerabilities or advanced exploit techniques. 

The absence of audit reports was a notable risk factor. Contracts without audit 

reports were exploited in 35% of cases, compared to 20% for those with 

available reports. This highlights the critical role of transparency and the 

availability of audit documentation in mitigating security risks. 

In summary, audited contracts demonstrate a significantly lower likelihood of 

exploitation compared to non-audited ones. "Integer Overflow" and "Unchecked 

Call" were identified as the most common vulnerabilities leading to exploitation. 

Additionally, missing audit reports correlated with higher exploit likelihood, and 

the presence of hidden vulnerabilities in seemingly secure contracts suggests 

a need for more robust security measures. 

Discussion 

The findings of this study highlight several key insights into the security of 

blockchain smart contracts. First, the significantly lower exploitation rates 

among audited contracts underscore the value of conducting thorough security 

audits. Audited contracts are generally more resilient to exploitation, though the 

occurrence of some exploits in audited contracts suggests the need for 

continuous improvement in auditing practices to identify and mitigate hidden 

vulnerabilities. Second, the prominence of "Integer Overflow" and "Unchecked 

Call" as leading vulnerabilities demonstrates the necessity for developers to 

implement stricter coding standards and adopt automated tools to detect these 

issues during the development phase. The high exploitation rates associated 

with these vulnerabilities emphasize their criticality in the smart contract security 

landscape. 

Third, the analysis reveals that contracts with missing audit reports are 

disproportionately vulnerable to exploitation. This finding underscores the 

importance of transparency in security practices. Publicly accessible audit 

reports can act as a deterrent to malicious actors and provide developers with 

insights into common security pitfalls. Additionally, the presence of exploit 

histories in contracts with no known vulnerabilities highlights the evolving nature 

of blockchain threats. Hidden vulnerabilities, whether due to advanced exploit 

techniques or oversight during development and auditing, necessitate ongoing 

research and adaptive security measures. 

In conclusion, the study demonstrates the importance of auditing, robust coding 

practices, and transparency in reducing security risks in blockchain smart 

contracts. Future research should explore advanced techniques, such as formal 

verification and machine learning-based vulnerability detection, to further 

enhance the security of these systems. 

Conclusion 

This study provides a comprehensive analysis of known vulnerabilities and 

exploits patterns in blockchain smart contracts, highlighting critical factors that 

influence their security. Audited contracts are significantly less likely to be 

exploited, emphasizing the role of thorough and transparent auditing practices 

in mitigating risks. "Integer Overflow" and "Unchecked Call" were identified as 
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the most prevalent vulnerabilities, underscoring the need for improved 

development practices and proactive vulnerability management. The study also 

reveals the criticality of audit report availability, as contracts with missing audit 

reports are disproportionately vulnerable to exploitation. Furthermore, the 

existence of exploit histories in contracts with no known vulnerabilities highlights 

the evolving and sophisticated nature of blockchain security threats. 

To enhance the security of blockchain systems, developers, auditors, and 

researchers must collaborate to implement advanced security measures, 

promote transparency, and explore innovative techniques such as formal 

verification and machine learning. These efforts will ensure the development of 

more robust and secure smart contract ecosystems, safeguarding the interests 

of users and stakeholders. Future works should focus on integrating blockchain 

security tools directly into development workflows to proactively identify 

vulnerabilities. Research into scalable formal verification methods and adaptive 

machine learning models tailored for blockchain environments holds significant 

promise. Additionally, fostering industry-wide collaboration and standardization 

for smart contract auditing practices will contribute to creating a more secure 

and trustworthy blockchain ecosystem. 
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