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ABSTRACT

Blockchain smart contracts are pivotal to decentralized applications, yet their security
remains a critical challenge. This study analyzes a dataset of 1,000 smart contracts
to investigate known vulnerabilities, audit practices, and exploit patterns. The results
reveal that audited contracts are significantly less prone to exploitation, with 75%
exhibiting no exploit history compared to 55% of non-audited contracts. "Integer
Overflow" and "Unchecked Call" were identified as the most prevalent vulnerabilities,
contributing to 60% and 50% exploit rates, respectively. The study highlights the
importance of transparent audit reporting, as contracts without available reports were
exploited in 35% of cases. Additionally, hidden vulnerabilities in ostensibly secure
contracts underscore the evolving sophistication of blockchain threats. This research
emphasizes the need for robust security practices, including stricter coding standards,
comprehensive audits, and advanced vulnerability detection techniques such as
formal verification and machine learning. Future works aim to integrate security tools
into development workflows and foster industry-wide collaboration to standardize
auditing practices, thereby enhancing the security and trustworthiness of blockchain
ecosystems.

Keywords Blockchain Security, Smart Contract Vulnerabilities, Audit Practices in
Blockchain, Exploit Detection, Machine Learning for Blockchain

INTRODUCTION

Blockchain technology has emerged as a revolutionary solution for
decentralized applications, offering transparency, immutability, and trustless
interactions [1]. Since its inception, blockchain has disrupted traditional
systems, empowering sectors like finance, supply chain, and healthcare [2], [3].
At the core of many blockchain platforms are smart contracts (self-executing
programs that automate agreements and transactions without intermediaries)
[4]. This automation reduces operational costs and eliminates human error,
making smart contracts an integral component of decentralized systems [5].
Despite their potential, smart contracts are often plagued by security
vulnerabilities, which have led to significant financial losses and undermined
trust in blockchain systems [6]. High-profile incidents, such as the 2016 DAO
hack, which resulted in a loss of $60 million, and the 2017 Parity wallet breach,
where $150 million worth of cryptocurrency was frozen, highlight the
catastrophic consequences of exploiting vulnerabilities in smart contracts.
These cases underscore the urgent need for robust security measures during
the development, deployment, and auditing of smart contracts.

The vulnerabilities in smart contracts often arise from coding errors, inadequate
testing, or overlooked edge cases [7]. Common issues include "Integer
Overflow," where arithmetic operations exceed their storage limit, and
"Unchecked Call," where external contract calls do not validate return values,
leading to unintended behavior [8]. These vulnerabilities are further
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exacerbated by the absence of comprehensive auditing practices and the lack
of transparency in reporting audit findings. Such gaps leave many smart
contracts exposed to sophisticated and evolving attack vectors. This study aims
to address these challenges by systematically analyzing a dataset of 1,000
blockchain smart contracts to uncover patterns of known vulnerabilities and
exploit histories. The research investigates the prevalence of vulnerabilities,
evaluates the effectiveness of auditing practices, and examines the role of
transparency in mitigating exploit risks. By focusing on empirical evidence, this
study sheds light on critical areas for improvement in the blockchain ecosystem.
The findings of this research offer actionable insights for various stakeholders.
Developers can use these insights to adopt stricter coding standards and
automated testing tools, while auditors can refine their methodologies to better
detect and mitigate vulnerabilities. Researchers can leverage the results to
explore innovative approaches, such as machine learning and formal
verification, to enhance the security of smart contracts. Ultimately, this study
seeks to contribute to the development of a robust and trustworthy blockchain
ecosystem capable of withstanding the evolving threats posed by malicious
actors.

Literature Review

Blockchain security has been a focus of extensive research, with numerous
studies addressing the vulnerabilities and challenges of smart contracts. Luu et
al. [9] introduced Oyente, a symbolic execution tool for analyzing Ethereum
smart contracts, demonstrating its ability to detect common vulnerabilities like
reentrancy and integer overflows. This work laid the foundation for automated
vulnerability detection in smart contracts. Similarly, Kalra et al. [10] proposed
ZEUS, a framework leveraging formal verification to ensure the correctness and
security of smart contracts, showcasing the potential of formal methods in
mitigating vulnerabilities. The significance of auditing in blockchain security has
been emphasized in several works. Grishchenko et al. [11] conducted a formal
verification of the Ethereum Virtual Machine (EVM) bytecode to identify logical
flaws and ensure functional correctness. Their findings highlighted the
importance of bytecode-level audits in preventing vulnerabilities that might
escape higher-level inspections. Moreover, Tsankov et al. [12] introduced
Securify, a scalable analysis tool for Ethereum smart contracts, which provided
practical insights into contract vulnerabiliies and compliance with best
practices. Nikolic et al. [13] developed MAIAN, a tool designed to detect
vulnerabilities related to frozen funds and leakage of Ether in smart contracts.
Their study showcased the prevalence of these issues in Ethereum,
emphasizing the need for automated detection tools to cover a broader range
of security flaws. Similarly, Chu et al. [14] proposed SMARTSHIELD, an
approach to decompile and analyze smart contracts for vulnerabilities at the
source-code level, bridging the gap between developer-written code and
bytecode analysis.

While these tools and frameworks have significantly advanced the field,
challenges remain in ensuring transparency and accessibility of audit reports.
Liu et al. [15] examined the impact of audit transparency on user trust and
developer accountability, concluding that publicly available audit reports not
only reduce the likelihood of exploits but also enhance confidence in blockchain
ecosystems. Moreover, Durieux et al. [16] conducted a large-scale empirical
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study of Ethereum contracts, revealing that many vulnerabilities persist despite
the availability of advanced tools, primarily due to developer negligence or lack
of awareness. Recent studies have also explored the role of machine learning
in detecting vulnerabilities. Chen et al. [17] developed a deep learning model to
classify and predict smart contract vulnerabilities, demonstrating high accuracy
and scalability. Huang et al. [18] extended this work by incorporating transfer
learning techniques to analyze cross-platform vulnerabilities, highlighting the
adaptability of machine learning for diverse blockchain ecosystems. Despite
these advancements, gaps persist in addressing the dynamic nature of
blockchain threats. Continuous updates to security tools, combined with
proactive research into emerging attack vectors, are essential to safeguarding
the integrity of smart contracts. This study builds upon these related works by
providing an empirical analysis of real-world contracts, examining the interplay
between audit practices, vulnerability patterns, and exploit histories to offer
actionable recommendations for enhancing blockchain security.

Method

This study employed a multi-step methodological approach to analyze the
security of blockchain smart contracts. (see figure 1) The dataset consisted of
1,000 Ethereum smart contracts, sourced from repositories like Etherscan and
OpenZeppelin. Contracts were selected based on their activity levels, diversity
in types, and availability of audit information. Key attributes collected included
contract addresses, known vulnerabilities such as "Integer Overflow" and
"Unchecked Call," audit status, and exploit histories. Missing values, such as
audit report URLs, were handled by categorizing contracts into "Report
Available" and "Report Missing." Terminologies like "Overflow" were
standardized to "Integer Overflow" to ensure consistency in the analysis.

Data prepocessing Vulnerability and Exploit Model Development

Handling Missing

Values

Analysis —
decision tree
classifier

Frequency Analysis

Standardizing JY
Vulnerability Labels Exploi )
ploit Correlation -
Analysis Validation
Qutlier Detection

Audit Effectiveness
Evaluation
Dataset Description o
Narmalization

Figure 1 Research Step

To understand the relationship between vulnerabilities, audit practices, and
exploit histories, statistical analyses were performed. The chi-square test was
applied to determine the association between categorical variables, such as
audit status and exploit occurrence. The formula for the chi-square statistic X2
is [19], [20], [21]:

0 - E)?
D e @)

Astriratma (2025) J. Curr. Res. Blockchain. 171



Journal of Current Research in Blockchain

0; is the observed frequency and E; is the expected frequency under the null
hypothesis. The degrees of freedom for the test are calculated as:

df =(r=1)x(c-1) (2)

r is the number of rows and c is the number of columns in the contingency table.

Additionally, the relative risk (RR) was used to compare the likelihood of
exploitation between audited and non-audited contracts:

_ P(Exploit | Not Audited)
"~ P(Exploit | Audited)

3)

P represents the conditional probability of exploitation given the audit status.
Confidence intervals (Cls) for (RR) were computed using the formula:

1 1
I = In(RR) £ Z. |—+— 4
Cl=exp| INRR£Z. |-+ @

Z is the critical value for the desired confidence level (e.g., 1.96 for 95% CI), n1
is the number of audited contracts, and n2 is the number of non-audited
contracts.

To predict the likelihood of exploitation, a decision tree classifier was employed.
The Gini impurity (G) was used as the splitting criterion in the tree:

K
G=1-) p/ (5)
i=1
p; is the proportion of samples belonging to the class i, and k is the number of
classes.

The dataset was divided into training (80%) and testing (20%) subsets, and
hyperparameter tuning was conducted using grid search. Metrics such as
accuracy (A), precision (P), recall (R) and Fl-score F; were calculated to
evaluate model performance [22], [23], [24]:

TP+TN

A= P ¥INTFPTFN ©
. (TP)
=P+ Py ")
(TP)
~ (TP + FN) ®)
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TP,TN,FP,and FNrepresent true positives, true negatives, false positives, and
false negatives, respectively. Numerical features such as transaction counts
were normalized using min-max scaling to ensure comparability [25], [26], [27]:

, _ x—min(x)

"~ mas(x) — min (x)

(10)

x is the original value, and min (x) and max (x) are the minimum and maximum
values in the dataset.

To visualize the findings, bar charts were used to show the distribution of
vulnerabilities, scatter plots illustrated the relationship between audit status and
exploit rates, and heatmaps depicted correlations among features. Cross-
validation k = 10 was applied to ensure the robustness of the results.

Result and Discussion

The dataset consists of 1,000 blockchain smart contracts with key attributes
such as contract address, known vulnerabilities, audit status, audit report URL,
and exploit history. Among the contracts, 65% had no known vulnerabilities,
20% were associated with "Integer Overflow," 10% exhibited "Unchecked Call"
vulnerabilities, and 5% contained other miscellaneous vulnerabilities (see table
1). A significant portion of the dataset (47%) had missing audit report URLS,
posing challenges for transparency and security analysis.

Table 1 Summary of Vulnerabilities

Vulnerability Type Percentage of Contracts Exploited (%)
No Known Vulnerabilities 65% 10%
Integer Overflow 20% 60%
Unchecked Call 10% 50%
Other Vulnerabilities 5%

The summary of Vulnerabilities is represented in figure 2.
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Figure 2 Distribution of Vulnerabilities and Exploits

A comparative analysis (see table 2) revealed that audited contracts were
significantly less likely to be exploited than non-audited ones. Specifically, 75%
of audited contracts had no exploit history, while 25% experienced exploitation,
often due to undetected vulnerabilities. In contrast, 45% of non-audited
contracts were exploited, with a majority of these cases linked to "Integer
Overflow" vulnerabilities.

Table 2 Audit and Exploit Correlation

Audit Status Percentage of Contracts Exploited (%)
Audited 53% 25%
Not Audited 47% 45%

The Audit and Exploit Correlation is represented in figure 3.
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Figure 3 Audit and Exploit Correlation

The analysis of vulnerability types showed that "Integer Overflow" was present
in 200 contracts, 60% of which were exploited, primarily targeting financial
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transactions. Similarly, "Unchecked Call" vulnerabilities were found in 100
contracts, with 50% exploited due to inadequate input validation. Interestingly,
10% of contracts with no reported vulnerabilities still had exploit histories,
indicating the presence of hidden vulnerabilities or advanced exploit techniques.
The absence of audit reports was a notable risk factor. Contracts without audit
reports were exploited in 35% of cases, compared to 20% for those with
available reports. This highlights the critical role of transparency and the
availability of audit documentation in mitigating security risks.

In summary, audited contracts demonstrate a significantly lower likelihood of
exploitation compared to non-audited ones. "Integer Overflow" and "Unchecked
Call" were identified as the most common vulnerabilities leading to exploitation.
Additionally, missing audit reports correlated with higher exploit likelihood, and
the presence of hidden vulnerabilities in seemingly secure contracts suggests
a need for more robust security measures.

Discussion

The findings of this study highlight several key insights into the security of
blockchain smart contracts. First, the significantly lower exploitation rates
among audited contracts underscore the value of conducting thorough security
audits. Audited contracts are generally more resilient to exploitation, though the
occurrence of some exploits in audited contracts suggests the need for
continuous improvement in auditing practices to identify and mitigate hidden
vulnerabilities. Second, the prominence of "Integer Overflow" and "Unchecked
Call" as leading vulnerabilities demonstrates the necessity for developers to
implement stricter coding standards and adopt automated tools to detect these
issues during the development phase. The high exploitation rates associated
with these vulnerabilities emphasize their criticality in the smart contract security
landscape.

Third, the analysis reveals that contracts with missing audit reports are
disproportionately vulnerable to exploitation. This finding underscores the
importance of transparency in security practices. Publicly accessible audit
reports can act as a deterrent to malicious actors and provide developers with
insights into common security pitfalls. Additionally, the presence of exploit
histories in contracts with no known vulnerabilities highlights the evolving nature
of blockchain threats. Hidden vulnerabilities, whether due to advanced exploit
techniques or oversight during development and auditing, necessitate ongoing
research and adaptive security measures.

In conclusion, the study demonstrates the importance of auditing, robust coding
practices, and transparency in reducing security risks in blockchain smart
contracts. Future research should explore advanced techniques, such as formal
verification and machine learning-based vulnerability detection, to further
enhance the security of these systems.

Conclusion

This study provides a comprehensive analysis of known vulnerabilities and
exploits patterns in blockchain smart contracts, highlighting critical factors that
influence their security. Audited contracts are significantly less likely to be
exploited, emphasizing the role of thorough and transparent auditing practices
in mitigating risks. "Integer Overflow" and "Unchecked Call" were identified as

Astriratma (2025) J. Curr. Res. Blockchain. 175



Journal of Current Research in Blockchain

the most prevalent vulnerabilities, underscoring the need for improved
development practices and proactive vulnerability management. The study also
reveals the criticality of audit report availability, as contracts with missing audit
reports are disproportionately vulnerable to exploitation. Furthermore, the
existence of exploit histories in contracts with no known vulnerabilities highlights
the evolving and sophisticated nature of blockchain security threats.

To enhance the security of blockchain systems, developers, auditors, and
researchers must collaborate to implement advanced security measures,
promote transparency, and explore innovative techniques such as formal
verification and machine learning. These efforts will ensure the development of
more robust and secure smart contract ecosystems, safeguarding the interests
of users and stakeholders. Future works should focus on integrating blockchain
security tools directly into development workflows to proactively identify
vulnerabilities. Research into scalable formal verification methods and adaptive
machine learning models tailored for blockchain environments holds significant
promise. Additionally, fostering industry-wide collaboration and standardization
for smart contract auditing practices will contribute to creating a more secure
and trustworthy blockchain ecosystem.
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