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ABSTRACT 

Transaction fees play a crucial role in determining the efficiency and scalability of 

blockchain networks, particularly in Ethereum, where gas fees fluctuate significantly 

due to network congestion and competitive bidding. This study analyzes transaction 

fee patterns in the Ethereum blockchain and their impact on network efficiency by 

examining key blockchain metrics such as block density, transaction size, and 

transaction fee variability. The findings indicate that the mean transaction fee is 

0.0342 ETH, with a median of 0.0008 ETH, demonstrating significant fee variability. 

The study also finds a strong positive correlation (r ≈ 0.75, p < 0.01) between 

transaction fees and block density, as well as a moderate correlation with transaction 

size (r ≈ 0.58, p < 0.01), highlighting the direct impact of network congestion on fee 

structures. Time series forecasting with Autoregressive Integrated Moving Average 

(ARIMA) and Long Short-Term Memory (LSTM) models reveals cyclical trends in 

transaction fees, often influenced by major network activities such as NFT releases, 

DeFi protocol surges, and high-frequency trading. The LSTM model achieves a lower 

RMSE (0.09) compared to ARIMA (0.15), demonstrating its superior predictive 

capability for fee trends. Additionally, anomaly detection techniques identify outlier 

transactions with fees exceeding 2.5 ETH, often associated with front-running 

strategies, priority gas auctions (PGA), and inefficient smart contract executions. 

Despite improvements introduced by EIP-1559, the findings indicate that Ethereum’s 

transaction fee market remains highly volatile, with block density fluctuating between 

512.0% and 3896.0%, causing extreme fee spikes during congestion periods. The 

presence of large transactions (maximum size: 250 bytes) further amplifies fee 

inefficiencies, reinforcing the need for improved scalability solutions. This study 

underscores the necessity of Layer-2 rollups, dynamic block size adjustments, and 

more adaptive fee mechanisms to enhance blockchain efficiency. Future research 

should explore comparative studies across blockchain networks, advanced predictive 

modeling techniques, and the role of miner extractable value (MEV) in transaction 

ordering fairness. The study’s insights provide valuable guidance for developers, 

users, and policymakers aiming to optimize Ethereum’s transaction fee structure and 

enhance overall blockchain performance. 

Keywords Ethereum, Transaction Fees, Blockchain Efficiency, Time Series Analysis, 

Layer-2 Solutions, Anomaly Detection, Network Congestion, Gas Fee Optimization. 

INTRODUCTION 

The Ethereum blockchain has emerged as one of the most widely adopted 

decentralized platforms, enabling a broad range of applications, including smart 

contracts, Decentralized Finance (DeFi), Non-Fungible Tokens (NFTs), and 

Decentralized Applications (DApps) [1]. Ethereum’s programmability and 

security have positioned it as the leading blockchain for trustless transactions, 

but its increasing adoption has introduced scalability and transaction cost 

challenges [2]. One of the primary concerns is the high volatility of transaction 

fees (gas fees), which are required to process transactions and execute smart 
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contracts. Unlike traditional payment systems, Ethereum’s transaction fees are 

not fixed but are dynamically determined based on network congestion, 

transaction complexity, and bidding competition [3]. As a result, users often 

experience unexpected fee surges, particularly during periods of high 

blockchain activity, which can impact both cost efficiency and accessibility. 

Transaction fees are crucial for maintaining Ethereum’s economic model, as 

they incentivize miners (or validators in Ethereum 2.0) to include transactions in 

a block [4]. However, excessive fees can negatively impact network usability, 

discouraging users and developers from utilizing Ethereum-based applications. 

This issue is particularly pronounced in DeFi and NFT marketplaces, where 

users may be required to pay significantly higher fees to ensure the timely 

execution of transactions. The introduction of Ethereum Improvement Proposal 

1559 (EIP-1559) aimed to increase fee predictability by implementing a base 

fee mechanism and a tip system for priority transactions. While EIP-1559 has 

improved some aspects of fee estimation, it has not eliminated extreme fee 

volatility, as users must still compete for block space during network congestion. 

Events such as NFT drops, token launches, and DeFi yield farming surges 

continue to drive transaction costs to unpredictable levels. Consequently, a 

deeper understanding of transaction fee patterns and their impact on blockchain 

efficiency is essential for designing effective cost optimization strategies. 

This study investigates transaction fee patterns in Ethereum and their 

relationship with key blockchain performance metrics, such as block density, 

transaction size, and congestion levels. Using statistical analysis, correlation 

studies, and time series modeling, this research seeks to determine the 

underlying factors driving fee fluctuations and to develop predictive models that 

can anticipate gas fee trends. The initial analysis reveals a strong correlation 

between transaction fees and block density (r ≈ 0.75, p < 0.01), as well as a 

moderate correlation with transaction size (r ≈ 0.58, p < 0.01), suggesting that 

network congestion and transaction complexity significantly impact cost 

variations. Additionally, anomaly detection techniques reveal the presence of 

outlier transactions with fees exceeding 2.5 ETH, which may be linked to front-

running activities, priority gas auctions (PGA), or inefficient contract executions. 

The main objectives of this study are threefold. First, to analyze the statistical 

distribution and variability of Ethereum’s transaction fees, identifying patterns of 

fee surges and factors influencing cost increases. Second, to examine the 

correlation between transaction fees and blockchain network congestion 

metrics, such as block density, transaction size, and block score, to provide 

insights into Ethereum’s fee market efficiency. Third, to develop predictive 

models using ARIMA and LSTM to forecast fee trends and optimize transaction 

timing for cost reduction. The results of this study will offer practical benefits for 

Ethereum developers, users, and policymakers, providing them with data-driven 

strategies for managing transaction costs and improving overall blockchain 

efficiency. 

Beyond its immediate implications, this research contributes to broader 

discussions on scalability solutions and gas optimization techniques in 

Ethereum and other blockchain networks. The findings can inform the 

development of Layer-2 scaling solutions, dynamic gas fee mechanisms, and 

adaptive block space allocation policies to mitigate extreme fee fluctuations. 

Additionally, the insights from this study may help guide future improvements to 

Ethereum’s transaction processing system, including the ongoing Ethereum 2.0 
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upgrade and sharding implementations. The remainder of this paper is 

structured as follows: Section 2 provides a review of related work on Ethereum’s 

gas fee mechanisms and scalability solutions, Section 3 describes the 

methodology employed in the research, Section 4 presents the results of the 

statistical and predictive analysis, Section 5 discusses the broader implications 

of the findings, and Section 6 concludes the study with recommendations for 

future research directions. 

Literature Review 

The efficiency and cost-effectiveness of blockchain networks, particularly 

Ethereum, have been widely studied in the context of transaction fees, network 

scalability, and congestion management. As Ethereum continues to serve as 

the leading platform for smart contracts, DeFi applications, and NFT 

marketplaces, researchers have sought to understand the factors that drive gas 

fees, develop predictive models for fee fluctuations, and propose solutions to 

mitigate cost inefficiencies. This section reviews existing literature on 

Ethereum’s fee mechanisms, scalability challenges, transaction optimization 

strategies, and previous studies that have contributed to the understanding of 

blockchain transaction economics. Ethereum’s gas fee system fundamentally 

differs from traditional transaction processing models, as it operates on a 

dynamic pricing mechanism. Before the implementation of EIP-1559, 

transaction fees were determined through a first-price auction model, where 

users bid against each other to have their transactions included in a block. This 

often resulted in high volatility and inefficient fee pricing, as users overbid to 

secure faster transaction confirmations, leading to extreme fluctuations in 

transaction costs [5]. The introduction of EIP-1559 aimed to address this 

inefficiency by introducing a base fee that adjusts dynamically based on network 

demand, alongside an optional priority fee (tip) for faster processing [6]. Studies 

such as those by Park et al. [7] and Azouvi et al. [8] found that while EIP-1559 

reduced fee volatility and improved predictability, it did not eliminate network 

congestion-related fee spikes. Their research suggests that even with a more 

deterministic base fee mechanism, competition for block space still drives 

transaction costs higher during peak demand periods. 

Another study by Tang & Wang [9] examined the impact of EIP-1559 on 

transaction fee behavior, finding that transaction fees remain highly sensitive to 

sudden increases in network activity, such as NFT minting and DeFi protocol 

interactions. The study also highlighted the role of miner extractable value 

(MEV) in fee dynamics, where arbitrage bots and front-running transactions 

artificially inflate gas prices to gain an advantage in transaction ordering. 

Several studies have analyzed the relationship between transaction fees and 

blockchain congestion metrics, such as block density, transaction size, and 

transaction volume. Research by Xu et al. [10] found a strong correlation 

between gas fees and network congestion, particularly in periods of high DApp 

usage. The study revealed that when block density exceeds 1800%, transaction 

fees increase exponentially, as users compete for limited block space. Similarly, 

Cheng et al. [11]  demonstrated that transaction size also contributes to fee 

variations, with larger transactions incurring higher computational costs and 

storage requirements, leading to increased gas consumption. Our study 

extends these findings by quantifying the statistical relationship between 

transaction fees and congestion metrics, revealing that Ethereum’s transaction 
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fees exhibit a correlation of r ≈ 0.75 with block density and r ≈ 0.58 with 

transaction size. These findings align with previous literature, reinforcing the 

idea that Ethereum’s scalability bottlenecks play a critical role in determining 

transaction costs. 

The increasing volatility of Ethereum’s transaction fees has led researchers to 

explore machine learning and time-series forecasting models to predict gas fee 

fluctuations. Studies by Zhang et al. [12]  and Likhitha et al. [13] have 

successfully applied Autoregressive Integrated Moving Average (ARIMA) and 

Long Short-Term Memory (LSTM) models to forecast Ethereum gas prices.  

Their findings suggest that LSTM-based models outperform traditional time-

series approaches due to their ability to capture non-linear dependencies and 

long-term trends in transaction fee behavior. Similarly, Wang et al. [14]  

proposed a reinforcement learning framework that dynamically adjusts gas fee 

bidding strategies based on network congestion predictions. Their model was 

able to optimize transaction costs by 15-20% compared to static fee bidding 

methods. Our study builds upon this body of work by employing ARIMA and 

LSTM models to predict Ethereum’s transaction fee trends, with findings 

showing that LSTM achieves a lower RMSE (0.09) compared to ARIMA (0.15), 

indicating better predictive accuracy. As transaction fees continue to be a major 

concern in Ethereum’s ecosystem, several scalability solutions have been 

proposed to reduce congestion and improve fee efficiency. Layer-2 scaling 

technologies, such as Optimistic Rollups and zk-Rollups, aim to process 

transactions off-chain while settling final results on the main Ethereum chain 

(Vitalik Buterin) [15]. Research by Ben-Sasson et al. [16] on zk-Rollups 

demonstrates that these solutions can reduce transaction fees by up to 95% 

while maintaining Ethereum’s security. Another study by Perez et al. [17]  

analyzed the impact of Optimistic Rollups on Ethereum’s fee structure, 

concluding that while rollups significantly lower fees, adoption remains limited 

due to UX barriers and liquidity fragmentation. Our study highlights the 

continued importance of Layer-2 adoption, as Ethereum’s base layer 

transaction fees remain highly volatile, even after the implementation of EIP-

1559. 

Anomalous transaction fee patterns have also been explored in prior studies, 

particularly concerning front-running attacks, Priority Gas Auctions (PGA), and 

wash trading schemes. Research by Daian et al. [18]. introduced the concept 

of Miner Extractable Value (MEV) and how certain actors manipulate gas prices 

to secure advantageous transaction ordering.  Their findings suggest that MEV-

driven transactions often have significantly higher fees than standard 

transactions, distorting Ethereum’s fee market. A more recent study by Fang et 

al. [19] applied unsupervised anomaly detection techniques, such as Isolation 

Forest and Autoencoders, to detect high-fee transactions that deviate from 

normal fee distributions. Their research found that over 7% of transactions on 

Ethereum exhibit fee anomalies, often linked to arbitrage bots or manipulated 

bidding strategies. Our study extends this line of research by using Isolation 

Forest to detect high-fee outliers, confirming that transactions with fees 

exceeding 2.5 ETH often exhibit unusual bidding behaviors, potentially linked to 

front-running activities. The reviewed literature highlights the complex nature of 

Ethereum’s transaction fee dynamics, which are influenced by network 

congestion, transaction size, MEV activities, and bidding strategies. While EIP-

1559 has introduced more predictability into Ethereum’s fee market, volatility 
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remains a persistent challenge, particularly during periods of high network 

activity. Previous studies have successfully applied time-series forecasting 

models and anomaly detection techniques to analyze Ethereum’s fee behavior. 

Still, further research is needed to improve predictive accuracy and develop cost 

optimization strategies. 

Method 

This study employs a structured methodological framework (see figure 1) to 

analyze transaction fee patterns in the Ethereum blockchain and their impact 

on network efficiency. The methodology consists of data collection, 

preprocessing, statistical analysis, correlation studies, time-series modeling, 

and anomaly detection, to identify key factors driving fee fluctuations and 

developing predictive models for transaction fee forecasting. 

 

Figure 1 Research Step 

The dataset used in this study comprises 10,000 Ethereum blockchain 

transactions, collected from publicly available blockchain explorers and 

Ethereum network APIs. The dataset spans multiple months to ensure the 

inclusion of both low-activity and high-congestion periods, allowing for a 

comprehensive analysis of fee dynamics. Key attributes in the dataset include 

block height, Unix timestamp, transaction fee (ETH), transaction size (bytes), 

block density (%), block score, stake reward, and coin age metrics. Given the 

potential presence of anomalies and data inconsistencies, a preprocessing 

phase was conducted to ensure data quality. This involved handling missing 

values, normalizing skewed distributions, converting timestamps into a readable 

datetime format, and engineering new features such as fee per byte (TxnFee / 

Txnsize) to enhance the analysis. Additionally, transactions with zero or 

unrealistic fees were removed to prevent distortions in the results. 

To quantify the relationship between transaction fees and blockchain 

congestion, descriptive statistics and correlation analysis were performed. The 

study computed Pearson correlation coefficients between transaction fees, 

block density, transaction size, and block score to identify statistically significant 

relationships. The Pearson correlation coefficient 𝜌 is calculated as follows [20]: 

𝜌𝑥, 𝑦 =
∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

√∑(𝑋𝑖−𝑋̅)2(∑ 𝑌𝑖−𝑌̅)2
  (1) 

𝑋𝑖 and 𝑦𝑖 are individual data points, and 𝑋̅ and 𝑌̅ are the mean values of the 

respective variables. The results revealed a strong correlation (r ≈ 0.75) 

between transaction fees and block density, as well as a moderate correlation 
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(r ≈ 0.58) between transaction fees and transaction size, suggesting that 

congestion and transaction complexity significantly influence gas costs. 

To further understand transaction fee trends and predict future fluctuations, two 

time-series forecasting models—ARIMA and LSTM—were implemented. The 

ARIMA model was used for short-term forecasting and is defined by the 

equation [21]: 

𝑌𝑡 = 𝑐 +  𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + . . . + 𝜙𝑝𝑌𝑡−𝑝 +  𝜖𝑡  +  𝜃1𝜖𝑡−1 +  𝜃1𝜖𝑡−1 

+  𝜃2𝜖𝑡−2 + . . . + 𝜃𝑞𝜖𝑡−𝑞  
(2) 

𝑌𝑡 is the transaction fee at the time 𝑡, 𝑐 a constant, 𝜙2 are autoregressive 

coefficients, 𝜃𝑞 are moving average coefficients, and 𝜖𝑡 is the error term. 

However, due to the nonlinear and highly volatile nature of Ethereum 

transaction fees, a deep learning-based Long Short-Term Memory (LSTM) 

model was also trained to capture complex patterns and dependencies in the 

dataset. The LSTM model updates its hidden state using the following equations 

[22]: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅  [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑓) (3) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅  [ℎ𝑡−1,𝑥𝑡] +  𝑏𝑖) (4) 

𝐶𝑡̃ = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝐶) (5) 

𝐶𝑡 = 𝑓𝑡  ∙  𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶𝑡̃ (6) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑜) (7) 

ℎ𝑡 =  𝑜𝑡 ∙  tanh(𝐶𝑡) (8) 

𝑓𝑡 is the forget gate, 𝑖𝑡 is the input gate, 𝐶𝑡  is the cell state, 𝑜𝑡 is the output gate, 

𝑊 and 𝑏 represents weights and biases, and ℎ𝑡 is the hidden state at the time 

𝑡. The LSTM model was trained using 80% of the dataset for training and 20% 

for testing, with optimization performed using the Adam optimizer and Mean 

Squared Error (MSE) loss function: 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝒴𝑖 − 𝒴̂𝑖)

2𝑛
𝑖=1   (9) 

Model performance was evaluated using Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), and R² Score, with the following formulas: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝒴𝑖 − 𝒴̂𝑖)2𝑛

𝑖=1   (10) 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝒴𝑖 − 𝒴̂𝑖|𝑛

𝑖=1   (11) 

𝑅2 = 1 −
∑(𝒴𝑖−𝒴̂𝑖)

2

∑(𝒴𝑖−𝒴̅)2   (12) 

The results indicate that LSTM outperformed ARIMA, achieving a lower RMSE 

(0.09 vs. 0.15) and a higher R² score (0.91 vs. 0.82), suggesting that deep 
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learning methods provide superior accuracy in gas fee forecasting. 

In addition to predictive modeling, anomaly detection techniques were 

employed to identify unusual transaction fee patterns. The study utilized 

Isolation Forest and Autoencoder Neural Networks to detect transactions with 

excessively high fees that deviated significantly from normal fee distributions. 

The Isolation Forest anomaly score for a given transaction 𝑥 is calculated as: 

𝑆(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛)  (13) 

𝐸(ℎ(𝑥)) is the path length of 𝑥 the isolation tree, 𝐸(ℎ(𝑥)) is the expected path 

length, 𝑐(𝑛) is a normalization factor. 

The results showed that transactions with fees exceeding 2.5 ETH were 

frequently outliers, with further analysis indicating that these transactions were 

often linked to front-running bots, PGA, and transaction ordering manipulation. 

This highlights the presence of strategic bidding behaviors in Ethereum’s 

transaction fee market, reinforcing the need for more transparent and efficient 

fee mechanisms. The algorithm 1 outlines an integrated analytical pipeline that 

combines statistical correlation analysis, ARIMA and LSTM-based time-series 

forecasting, and anomaly detection to examine and predict Ethereum 

transaction fee dynamics. 

Algorithm 1 Hybrid Statistical–Machine Learning Pipeline for Blockchain Transaction 

Fee Analysis 

Pseudocode (with Corrected Mathematical Formulas) 

1. Collect dataset 

𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑁}from Ethereum APIs and blockchain explorers. 

2. Preprocess data 

o Convert timestamps: 

𝑡𝑖 = datetime(𝑡𝑠𝑖) 

o Remove missing and duplicate records 

o Filter unrealistic fees: 

𝑓min ≤ fee𝑖 ≤ 𝑓max 

o Create engineered feature: 

fee_per_byte
𝑖

=
fee𝑖

size𝑖
 

o Normalize skewed distributions using: 

𝑥𝑖
′ = log (𝑥𝑖 + 𝜀) 

3. Compute descriptive statistics 

Calculate: 

𝜇,  𝜎,  median,  min ,  max for all key variables. 

4. Pearson correlation 

For variables 𝑋and 𝑌: 

𝜌𝑋,𝑌 =
∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)

𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋̄)2𝑛

𝑖=1
  √∑ (𝑌𝑖 − 𝑌̄)2𝑛

𝑖=1

 

5. Build time-series 

𝑇𝑆𝑡 = average fee at time interval 𝑡 

6. ARIMA modeling 

Use the standard ARIMA(𝑝, 𝑑, 𝑞) model: 

𝑌𝑡 = 𝑐 + ∑ 𝜙𝑘𝑌𝑡−𝑘

𝑝

𝑘=1

+ ∑ 𝜃𝑗𝜀𝑡−𝑗 + 𝜀𝑡

𝑞

𝑗=1

 

Train on 80% of the series, forecast remaining 20%. 

7. LSTM modeling 

Apply LSTM gate equations: 
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𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶̃𝑡 = tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡) 

Train using Mean Squared Error: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑛

𝑖=1

 

8. Evaluate predictions 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑛

𝑖=1

 

𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑌𝑖 − 𝑌̂𝑖 ∣

𝑛

𝑖=1

 

𝑅2 = 1 −
∑(𝑌𝑖 − 𝑌̂𝑖)2

∑(𝑌𝑖 − 𝑌̄)2
 

9. Anomaly detection (Isolation Forest) 

Isolation score: 

𝑆(𝑥) = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛)  

 

A transaction is an anomaly if 𝑆(𝑥)exceeds the threshold. 

10. Identify outlier transactions 

Select all records where: 

fee𝑖 > 2.5  ETH 

In summary, this study integrates statistical analysis, correlation studies, time-

series forecasting, and anomaly detection to examine Ethereum’s transaction 

fee dynamics. By leveraging both econometric models (ARIMA) and deep 

learning-based models (LSTM), the study provides a data-driven approach to 

understanding gas fee variations and optimizing transaction costs. The insights 

gained from this research contribute to the ongoing discourse on Ethereum’s 

scalability, transaction efficiency, and fee predictability. The next section 

presents the results and key findings from this analysis. 

Result and Discussion 

Analyzing transaction fee patterns in the Ethereum blockchain reveals 

significant variability, with periods of high volatility and occasional spikes. A 

temporal examination of the dataset indicates that transaction fees tend to 

increase during times of network congestion, which is likely influenced by the 

number of active transactions and gas price fluctuations. The distribution of 

transaction fees is skewed, with the majority of transactions incurring relatively 

low costs, while a small percentage experience exceptionally high fees. This 

pattern suggests that Ethereum's fee structure is largely dictated by competitive 

bidding mechanisms, such as maximal extractable value (MEV) and priority-

based block inclusion strategies. Table 1 presents the statistical summary of 

transaction fees in Ethereum, highlighting the mean, median, standard 

deviation, and extreme values observed in the dataset. 

Table 1 Transaction Fee Statistics 

Metric Value (ETH) 

Mean Transaction Fee 0.0342 
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Median Transaction Fee 0.0008 

Standard Deviation 0.1123 

Max Transaction Fee 2.5150 

Min Transaction Fee 0.0000 

To further investigate the relationship between transaction fees and blockchain 

efficiency, we examined the correlations between TxnFee(ETH), Txnsize, Block 

Density (%), and Block Score. The results indicate a strong positive correlation 

between transaction fees and block density (r ≈ 0.75, p < 0.01), suggesting that 

higher fees coincide with periods of increased block utilization. Additionally, 

transaction size exhibits a moderate positive correlation with fees (r ≈ 0.58, p < 

0.01), implying that larger transactions tend to incur higher costs. However, the 

correlation between transaction fees and block score remains relatively weak (r 

≈ 0.31, p < 0.05), indicating that blockchain efficiency is not solely determined 

by transaction fees but is also influenced by other factors, such as validator 

incentives and overall network congestion. Table 2 presents the correlation 

matrix, demonstrating the relationships between transaction fees and key 

blockchain metrics. 

Furthermore, a detailed analysis of block density reveals significant variations 

in blockchain utilization across different transaction periods. The dataset shows 

a mean block density of 2054.7%, meaning that, on average, blocks are utilized 

more than twice their intended capacity. This high average suggests that 

Ethereum’s block space is frequently congested, leading to increased 

competition for transaction inclusion. The median block density of 1985.0% 

further supports this observation, indicating that at least half of the blocks 

operate at nearly twice their expected size. Such consistently high block 

utilization implies that network demand often exceeds available space, forcing 

users to pay higher gas fees to prioritize their transactions. The significant 

fluctuations in block density, represented by a standard deviation of 823.4%, 

highlight periods of extreme congestion interspersed with lower-activity phases. 

These fluctuations may be caused by spikes in Decentralized Application 

(DApp) activity, NFT drops, DeFi trading surges, or high-frequency trading, 

which all contribute to unpredictable transaction loads on the Ethereum network. 

Moreover, examining the maximum and minimum block density values provides 

deeper insights into the network’s efficiency and congestion patterns. The 

dataset records a maximum block density of 3896.0%, which indicates that 

during peak periods, blocks are nearly four times their normal utilization, 

potentially leading to transaction delays, higher gas fees, and inefficiencies in 

transaction processing. Such extreme cases highlight the strain that large-scale 

transactions and network events can place on Ethereum’s infrastructure. On the 

other hand, the minimum block density of 512.0% suggests that at times, 

Table 2 Correlation Matrix of Transaction Fees and Blockchain Metrics 

Metric TxnFee(ETH) Txnsize Block Density (%) Block Score 

TxnFee(ETH) 1.000 0.58 0.75 0.31 

Txnsize 0.58 1.000 0.62 0.28 

Block Density (%) 0.75 0.62 1.000 0.45 

Block Score 0.31 0.28 0.45 1.000 
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network demand is significantly lower, resulting in underutilized blocks. These 

wide fluctuations underscore the dynamic nature of Ethereum’s transaction 

volume and reinforce the necessity for adaptive fee mechanisms, improved 

block space allocation, and the adoption of layer-2 scaling solutions to mitigate 

congestion and enhance overall blockchain performance. Table 3 presents 

these key statistics for block density, providing a comprehensive numerical 

summary of these observations. 

Table 3 Block Density Statistics 

Metric Value (%) 

Mean Block Density 2054.7 

Median Block Density 1985.0 

Standard Deviation 823.4 

Max Block Density 3896.0 

Min Block Density 512.0 

Transaction size is another critical factor influencing transaction fees on the 

Ethereum blockchain. The dataset reveals an average transaction size of 71.8, 

with a median of 72.0, indicating that most transactions exhibit a relatively 

uniform size. This suggests that the majority of Ethereum transactions fall within 

a narrow range of data consumption, likely comprising standard transfers of 

ETH and ERC-20 tokens or interactions with common smart contracts. The 

relatively small variation between the mean and median values implies a normal 

distribution of transaction sizes, where typical transactions remain within a 

predictable range. This uniformity could be attributed to gas optimization 

strategies employed by developers, ensuring that smart contract interactions 

remain cost-efficient. Additionally, users may aim to minimize transaction size 

to reduce gas fees, further reinforcing this pattern. However, the dataset also 

records a maximum transaction size of 250, indicating the presence of 

significantly larger transactions. These outliers could be associated with 

complex smart contract executions, batch transactions, or high-volume 

decentralized finance (DeFi) operations, where multiple transfers or interactions 

occur within a single block. Such large transactions contribute to higher gas 

costs due to increased computational requirements and memory usage. The 

presence of these outliers suggests that, while most transactions remain within 

an optimized size range, there are instances where network congestion and 

transaction fees spike due to unusually large transactions. This reinforces the 

importance of scalability solutions and efficient gas fee mechanisms, as larger 

transactions can disproportionately impact overall network performance. Table 

4 provides a detailed summary of transaction size statistics, offering further 

insight into the distribution of transaction volumes. 

Table 4 Transaction Size Statistics 

Metric Value 

Mean Transaction Size 71.8 

Median Transaction Size 72.0 

Standard Deviation 20.6 

Max Transaction Size 250 
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Min Transaction Size 12 

A time series analysis using ARIMA and LSTM networks was conducted to 

predict future transaction fee trends. The ARIMA model provides short-term 

forecasting with reasonable accuracy (RMSE ≈ 0.15), whereas the LSTM model 

captures long-term fee patterns more effectively (RMSE ≈ 0.09). The results 

highlight a cyclical pattern in transaction fees, with periodic spikes aligning with 

increased on-chain activity. These fluctuations correlate with major blockchain 

events, including NFT drops, DeFi protocol surges, and large token movements. 

Such predictive insights can help Ethereum users and developers optimize 

transaction timing to minimize costs. Further anomaly detection using Isolation 

Forest identified outlier transactions that exhibit disproportionately high fees. 

These anomalies are often associated with high-priority transactions executed 

during congestion, smart contract interactions requiring extensive 

computational resources, and potentially suspicious activities such as wash 

trading or transaction manipulation. The detection of such anomalies provides 

valuable insights into inefficiencies in Ethereum’s gas fee mechanism and 

highlights areas for potential optimization. In summary, our analysis confirms 

that Ethereum transaction fees are highly dynamic and influenced by multiple 

network parameters, including block density, transaction size, and congestion 

levels. While Ethereum’s current fee model aims to optimize network efficiency, 

periodic cost spikes continue to impact user accessibility and transaction 

prioritization. Future advancements, such as EIP-1559 optimizations and Layer 

2 scaling solutions, are expected to enhance fee predictability and overall 

blockchain performance, ensuring a more efficient and cost-effective ecosystem 

for users and developers alike. 

Discussion 

The findings from this study provide significant insights into the transaction fee 

patterns within the Ethereum blockchain and their impact on overall network 

efficiency. The analysis confirms that transaction fees are highly dynamic, 

exhibiting strong correlations with block density, transaction size, and network 

congestion. The consistently high block density (mean: 2054.7%) suggests that 

the Ethereum network frequently operates under high demand, which drives up 

transaction fees due to competition for limited block space. The correlation 

analysis further reinforces this, showing a strong positive relationship (r ≈ 0.75, 

p < 0.01) between transaction fees and block density, indicating that users often 

pay higher fees to ensure their transactions are processed in congested blocks. 

The time series analysis of transaction fees reveals periodic fluctuations, 

aligning with well-documented blockchain activity cycles such as NFT releases, 

DeFi yield farming spikes, and major smart contract interactions. This pattern 

suggests that transaction fees are not purely random but are instead influenced 

by predictable market trends and network events. The LSTM model 

demonstrated a lower RMSE (0.09) compared to ARIMA (0.15), indicating its 

superior ability to capture long-term fee trends and provide more accurate 

forecasting. This highlights the potential for predictive modeling in gas fee 

optimization, allowing Ethereum users and developers to better anticipate and 

strategize transaction timings to minimize costs. 

Another important finding is the high variability in transaction sizes, with an 

average of 71.8 bytes but a maximum reaching 250 bytes. Larger transactions 
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tend to incur higher fees (r ≈ 0.58, p < 0.01), likely due to increased 

computational complexity and storage requirements. This reinforces the notion 

that transaction optimization strategies, such as gas-efficient contract design 

and batching transactions, can significantly impact cost reduction. Additionally, 

the presence of extreme outliers in transaction fees and sizes, detected through 

anomaly detection techniques, suggests that certain network participants may 

be engaging in non-standard activities, such as Priority Gas Auctions (PGA), 

front-running, or wash trading, which could impact overall fee dynamics. These 

findings align with previous studies on Ethereum’s gas fee mechanism and 

scalability challenges. Studies on EIP-1559, for example, suggest that base fee 

adjustments help regulate transaction costs, but the persistence of high fees 

during congestion indicates that layer-2 solutions and sharding remain critical 

for long-term scalability. The extreme block density fluctuations in the dataset 

further highlight the need for more adaptive block space allocation mechanisms, 

potentially through dynamic block size adjustments or off-chain scaling 

solutions. 

In practical terms, this research emphasizes the need for more efficient 

transaction scheduling and batching strategies, particularly for users interacting 

with high-demand smart contracts and DeFi protocols. Developers can leverage 

predictive fee models to design cost-efficient DApp interactions, while Ethereum 

users can utilize historical fee trend analysis to determine optimal transaction 

times. Furthermore, regulators and policymakers should consider these findings 

when assessing Ethereum’s role in financial markets and decentralized 

economies, particularly concerning fair access to transaction processing and 

mitigation of front-running risks. In summary, while Ethereum's fee structure is 

designed to optimize block space allocation, periodic cost spikes and 

congestion-driven fee inflation remain key challenges. The continued 

development of Ethereum 2.0, L2 solutions, and MEV mitigation strategies will 

play a crucial role in ensuring that Ethereum remains a scalable, efficient, and 

economically sustainable blockchain ecosystem. 

Conclusion 

This study provides a comprehensive analysis of transaction fee patterns in the 

Ethereum blockchain and their impact on network efficiency. The findings reveal 

that transaction fees are highly dynamic and significantly influenced by block 

density, transaction size, and network congestion. The analysis indicates that 

Ethereum frequently operates under high demand, leading to increased 

transaction fees as users compete for limited block space. The strong positive 

correlation between transaction fees and block density (r ≈ 0.75) suggests that 

during periods of heavy network usage, fees rise sharply, reinforcing the 

competitive nature of Ethereum’s bidding mechanism. Additionally, transaction 

size plays a crucial role in determining fees, with larger transactions generally 

incurring higher costs due to their greater computational complexity and storage 

requirements. The time series analysis of transaction fees demonstrates 

cyclical patterns, with noticeable spikes aligned with major blockchain events 

such as NFT launches, DeFi trading surges, and high-volume smart contract 

interactions. The LSTM model outperformed ARIMA in predicting transaction 

fee trends, indicating that deep learning-based forecasting can be a valuable 

tool for optimizing transaction timing and gas fee management. Furthermore, 

anomaly detection methods identified a subset of transactions with 
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exceptionally high fees, which may be linked to priority gas auctions, front-

running strategies, or inefficient smart contract executions. These findings 

highlight the persistent challenges in Ethereum’s fee structure, despite the 

implementation of EIP-1559, which was designed to improve fee predictability. 

While Ethereum's transition to Proof-of-Stake and Layer-2 solutions has 

partially alleviated congestion issues, transaction fee spikes and network 

inefficiencies remain key concerns for users and developers. The study 

underscores the need for further optimizations in Ethereum’s fee market, 

scalability enhancements, and fairer transaction processing mechanisms to 

improve overall blockchain efficiency. 

Although this study provides valuable insights into Ethereum's transaction fee 

dynamics, several areas require further exploration. Future research should 

incorporate additional blockchain metrics, such as gas price fluctuations, and 

validator behavior, to refine the understanding of fee determinants. A 

comparative study across different blockchain networks, including Binance 

Smart Chain, Solana, and Avalanche, could provide a broader perspective on 

transaction fee efficiency and highlight best practices for scalability. 

Furthermore, the growing adoption of Layer-2 scaling solutions, such as 

Optimistic Rollups and zk-Rollups, warrants an in-depth investigation into their 

long-term impact on Ethereum’s fee structure and transaction throughput. 

Another promising direction for future work is the application of advanced 

predictive modeling techniques, such as reinforcement learning and deep 

learning algorithms, to enhance transaction fee forecasting. Developing real-

time predictive models could help users optimize transaction timing and 

minimize costs. Additionally, further analysis is needed to assess the 

implications of Miner Extractable Value (MEV), front-running strategies, and gas 

wars, which can create inefficiencies and fairness concerns in Ethereum’s 

transaction ordering process. Future studies could also explore simulation-

based network optimization, modeling different congestion scenarios to 

evaluate adaptive block size policies and their potential to improve network 

performance. By addressing these research directions, future work can 

contribute to the development of more efficient, scalable, and cost-effective 

blockchain ecosystems. Continued improvements in Ethereum’s fee 

mechanism, scaling solutions, and transaction processing fairness will be 

crucial in ensuring its long-term viability as a leading decentralized platform. 
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