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ABSTRACT

Transaction fees play a crucial role in determining the efficiency and scalability of
blockchain networks, particularly in Ethereum, where gas fees fluctuate significantly
due to network congestion and competitive bidding. This study analyzes transaction
fee patterns in the Ethereum blockchain and their impact on network efficiency by
examining key blockchain metrics such as block density, transaction size, and
transaction fee variability. The findings indicate that the mean transaction fee is
0.0342 ETH, with a median of 0.0008 ETH, demonstrating significant fee variability.
The study also finds a strong positive correlation (r = 0.75, p < 0.01) between
transaction fees and block density, as well as a moderate correlation with transaction
size (r = 0.58, p < 0.01), highlighting the direct impact of network congestion on fee
structures. Time series forecasting with Autoregressive Integrated Moving Average
(ARIMA) and Long Short-Term Memory (LSTM) models reveals cyclical trends in
transaction fees, often influenced by major network activities such as NFT releases,
DeFi protocol surges, and high-frequency trading. The LSTM model achieves a lower
RMSE (0.09) compared to ARIMA (0.15), demonstrating its superior predictive
capability for fee trends. Additionally, anomaly detection techniques identify outlier
transactions with fees exceeding 2.5 ETH, often associated with front-running
strategies, priority gas auctions (PGA), and inefficient smart contract executions.
Despite improvements introduced by EIP-1559, the findings indicate that Ethereum’s
transaction fee market remains highly volatile, with block density fluctuating between
512.0% and 3896.0%, causing extreme fee spikes during congestion periods. The
presence of large transactions (maximum size: 250 bytes) further amplifies fee
inefficiencies, reinforcing the need for improved scalability solutions. This study
underscores the necessity of Layer-2 rollups, dynamic block size adjustments, and
more adaptive fee mechanisms to enhance blockchain efficiency. Future research
should explore comparative studies across blockchain networks, advanced predictive
modeling techniques, and the role of miner extractable value (MEV) in transaction
ordering fairness. The study’s insights provide valuable guidance for developers,
users, and policymakers aiming to optimize Ethereum’s transaction fee structure and
enhance overall blockchain performance.
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INTRODUCTION

The Ethereum blockchain has emerged as one of the most widely adopted
decentralized platforms, enabling a broad range of applications, including smart
Additional Information and contracts, Decentralized Finance (DeFi), Non-Fungible Tokens (NFTs), and
Declarations can be found on Decentralized Applications (DApps) [1]. Ethereum’s programmability and
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contracts. Unlike traditional payment systems, Ethereum’s transaction fees are
not fixed but are dynamically determined based on network congestion,
transaction complexity, and bidding competition [3]. As a result, users often
experience unexpected fee surges, particularly during periods of high
blockchain activity, which can impact both cost efficiency and accessibility.
Transaction fees are crucial for maintaining Ethereum’s economic model, as
they incentivize miners (or validators in Ethereum 2.0) to include transactions in
a block [4]. However, excessive fees can negatively impact network usability,
discouraging users and developers from utilizing Ethereum-based applications.
This issue is particularly pronounced in DeFi and NFT marketplaces, where
users may be required to pay significantly higher fees to ensure the timely
execution of transactions. The introduction of Ethereum Improvement Proposal
1559 (EIP-1559) aimed to increase fee predictability by implementing a base
fee mechanism and a tip system for priority transactions. While EIP-1559 has
improved some aspects of fee estimation, it has not eliminated extreme fee
volatility, as users must still compete for block space during network congestion.
Events such as NFT drops, token launches, and DeFi yield farming surges
continue to drive transaction costs to unpredictable levels. Consequently, a
deeper understanding of transaction fee patterns and their impact on blockchain
efficiency is essential for designing effective cost optimization strategies.

This study investigates transaction fee patterns in Ethereum and their
relationship with key blockchain performance metrics, such as block density,
transaction size, and congestion levels. Using statistical analysis, correlation
studies, and time series modeling, this research seeks to determine the
underlying factors driving fee fluctuations and to develop predictive models that
can anticipate gas fee trends. The initial analysis reveals a strong correlation
between transaction fees and block density (r = 0.75, p < 0.01), as well as a
moderate correlation with transaction size (r = 0.58, p < 0.01), suggesting that
network congestion and transaction complexity significantly impact cost
variations. Additionally, anomaly detection techniques reveal the presence of
outlier transactions with fees exceeding 2.5 ETH, which may be linked to front-
running activities, priority gas auctions (PGA), or inefficient contract executions.
The main objectives of this study are threefold. First, to analyze the statistical
distribution and variability of Ethereum’s transaction fees, identifying patterns of
fee surges and factors influencing cost increases. Second, to examine the
correlation between transaction fees and blockchain network congestion
metrics, such as block density, transaction size, and block score, to provide
insights into Ethereum’s fee market efficiency. Third, to develop predictive
models using ARIMA and LSTM to forecast fee trends and optimize transaction
timing for cost reduction. The results of this study will offer practical benefits for
Ethereum developers, users, and policymakers, providing them with data-driven
strategies for managing transaction costs and improving overall blockchain
efficiency.

Beyond its immediate implications, this research contributes to broader
discussions on scalability solutions and gas optimization techniques in
Ethereum and other blockchain networks. The findings can inform the
development of Layer-2 scaling solutions, dynamic gas fee mechanisms, and
adaptive block space allocation policies to mitigate extreme fee fluctuations.
Additionally, the insights from this study may help guide future improvements to
Ethereum’s transaction processing system, including the ongoing Ethereum 2.0
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upgrade and sharding implementations. The remainder of this paper is
structured as follows: Section 2 provides a review of related work on Ethereum’s
gas fee mechanisms and scalability solutions, Section 3 describes the
methodology employed in the research, Section 4 presents the results of the
statistical and predictive analysis, Section 5 discusses the broader implications
of the findings, and Section 6 concludes the study with recommendations for
future research directions.

Literature Review

The efficiency and cost-effectiveness of blockchain networks, particularly
Ethereum, have been widely studied in the context of transaction fees, network
scalability, and congestion management. As Ethereum continues to serve as
the leading platform for smart contracts, DeFi applications, and NFT
marketplaces, researchers have sought to understand the factors that drive gas
fees, develop predictive models for fee fluctuations, and propose solutions to
mitigate cost inefficiencies. This section reviews existing literature on
Ethereum’s fee mechanisms, scalability challenges, transaction optimization
strategies, and previous studies that have contributed to the understanding of
blockchain transaction economics. Ethereum’s gas fee system fundamentally
differs from traditional transaction processing models, as it operates on a
dynamic pricing mechanism. Before the implementation of EIP-1559,
transaction fees were determined through a first-price auction model, where
users bid against each other to have their transactions included in a block. This
often resulted in high volatility and inefficient fee pricing, as users overbid to
secure faster transaction confirmations, leading to extreme fluctuations in
transaction costs [5]. The introduction of EIP-1559 aimed to address this
inefficiency by introducing a base fee that adjusts dynamically based on network
demand, alongside an optional priority fee (tip) for faster processing [6]. Studies
such as those by Park et al. [7] and Azouvi et al. [8] found that while EIP-1559
reduced fee volatility and improved predictability, it did not eliminate network
congestion-related fee spikes. Their research suggests that even with a more
deterministic base fee mechanism, competition for block space still drives
transaction costs higher during peak demand periods.

Another study by Tang & Wang [9] examined the impact of EIP-1559 on
transaction fee behavior, finding that transaction fees remain highly sensitive to
sudden increases in network activity, such as NFT minting and DeFi protocol
interactions. The study also highlighted the role of miner extractable value
(MEV) in fee dynamics, where arbitrage bots and front-running transactions
artificially inflate gas prices to gain an advantage in transaction ordering.
Several studies have analyzed the relationship between transaction fees and
blockchain congestion metrics, such as block density, transaction size, and
transaction volume. Research by Xu et al. [10] found a strong correlation
between gas fees and network congestion, particularly in periods of high DApp
usage. The study revealed that when block density exceeds 1800%, transaction
fees increase exponentially, as users compete for limited block space. Similarly,
Cheng et al. [11] demonstrated that transaction size also contributes to fee
variations, with larger transactions incurring higher computational costs and
storage requirements, leading to increased gas consumption. Our study
extends these findings by quantifying the statistical relationship between
transaction fees and congestion metrics, revealing that Ethereum’s transaction
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fees exhibit a correlation of r = 0.75 with block density and r = 0.58 with
transaction size. These findings align with previous literature, reinforcing the
idea that Ethereum’s scalability bottlenecks play a critical role in determining
transaction costs.

The increasing volatility of Ethereum’s transaction fees has led researchers to
explore machine learning and time-series forecasting models to predict gas fee
fluctuations. Studies by Zhang et al. [12] and Likhitha et al. [13] have
successfully applied Autoregressive Integrated Moving Average (ARIMA) and
Long Short-Term Memory (LSTM) models to forecast Ethereum gas prices.
Their findings suggest that LSTM-based models outperform traditional time-
series approaches due to their ability to capture non-linear dependencies and
long-term trends in transaction fee behavior. Similarly, Wang et al. [14]
proposed a reinforcement learning framework that dynamically adjusts gas fee
bidding strategies based on network congestion predictions. Their model was
able to optimize transaction costs by 15-20% compared to static fee bidding
methods. Our study builds upon this body of work by employing ARIMA and
LSTM models to predict Ethereum’s transaction fee trends, with findings
showing that LSTM achieves a lower RMSE (0.09) compared to ARIMA (0.15),
indicating better predictive accuracy. As transaction fees continue to be a major
concern in Ethereum’s ecosystem, several scalability solutions have been
proposed to reduce congestion and improve fee efficiency. Layer-2 scaling
technologies, such as Optimistic Rollups and zk-Rollups, aim to process
transactions off-chain while settling final results on the main Ethereum chain
(Vitalik Buterin) [15]. Research by Ben-Sasson et al. [16] on zk-Rollups
demonstrates that these solutions can reduce transaction fees by up to 95%
while maintaining Ethereum’s security. Another study by Perez et al. [17]
analyzed the impact of Optimistic Rollups on Ethereum’s fee structure,
concluding that while rollups significantly lower fees, adoption remains limited
due to UX barriers and liquidity fragmentation. Our study highlights the
continued importance of Layer-2 adoption, as Ethereum’s base layer
transaction fees remain highly volatile, even after the implementation of EIP-
1559.

Anomalous transaction fee patterns have also been explored in prior studies,
particularly concerning front-running attacks, Priority Gas Auctions (PGA), and
wash trading schemes. Research by Daian et al. [18]. introduced the concept
of Miner Extractable Value (MEV) and how certain actors manipulate gas prices
to secure advantageous transaction ordering. Their findings suggest that MEV-
driven transactions often have significantly higher fees than standard
transactions, distorting Ethereum’s fee market. A more recent study by Fang et
al. [19] applied unsupervised anomaly detection techniques, such as Isolation
Forest and Autoencoders, to detect high-fee transactions that deviate from
normal fee distributions. Their research found that over 7% of transactions on
Ethereum exhibit fee anomalies, often linked to arbitrage bots or manipulated
bidding strategies. Our study extends this line of research by using Isolation
Forest to detect high-fee outliers, confirming that transactions with fees
exceeding 2.5 ETH often exhibit unusual bidding behaviors, potentially linked to
front-running activities. The reviewed literature highlights the complex nature of
Ethereum’s transaction fee dynamics, which are influenced by network
congestion, transaction size, MEV activities, and bidding strategies. While EIP-
1559 has introduced more predictability into Ethereum’s fee market, volatility
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remains a persistent challenge, particularly during periods of high network
activity. Previous studies have successfully applied time-series forecasting
models and anomaly detection techniques to analyze Ethereum’s fee behavior.
Still, further research is needed to improve predictive accuracy and develop cost
optimization strategies.

Method

This study employs a structured methodological framework (see figure 1) to
analyze transaction fee patterns in the Ethereum blockchain and their impact
on network efficiency. The methodology consists of data collection,
preprocessing, statistical analysis, correlation studies, time-series modeling,
and anomaly detection, to identify key factors driving fee fluctuations and
developing predictive models for transaction fee forecasting.

o Data Collection
A 4
Anomaly Detection Model Evaluation Metrics Time-Series Modeling
Root Mean Square

Mean Absolute Error
Autoencoder Neural (MAE)

Networks

Data Preprocessing Statistical Analysis

ARIMA

R# Score

i

Figure 1 Research Step

The dataset used in this study comprises 10,000 Ethereum blockchain
transactions, collected from publicly available blockchain explorers and
Ethereum network APIls. The dataset spans multiple months to ensure the
inclusion of both low-activity and high-congestion periods, allowing for a
comprehensive analysis of fee dynamics. Key attributes in the dataset include
block height, Unix timestamp, transaction fee (ETH), transaction size (bytes),
block density (%), block score, stake reward, and coin age metrics. Given the
potential presence of anomalies and data inconsistencies, a preprocessing
phase was conducted to ensure data quality. This involved handling missing
values, normalizing skewed distributions, converting timestamps into a readable
datetime format, and engineering new features such as fee per byte (TxnFee /
Txnsize) to enhance the analysis. Additionally, transactions with zero or
unrealistic fees were removed to prevent distortions in the results.

To quantify the relationship between transaction fees and blockchain
congestion, descriptive statistics and correlation analysis were performed. The
study computed Pearson correlation coefficients between transaction fees,
block density, transaction size, and block score to identify statistically significant
relationships. The Pearson correlation coefficient p is calculated as follows [20]:

_ _ LXi=X)(¥;-Y) 1
Py = R-0r 1) M

X; and y; are individual data points, and X and Y are the mean values of the
respective variables. The results revealed a strong correlation (r = 0.75)
between transaction fees and block density, as well as a moderate correlation

Salem and Aqel (2025) J. Curr. Res. Blockchain. 232



Journal of Current Research in Blockchain

(r = 0.58) between transaction fees and transaction size, suggesting that
congestion and transaction complexity significantly influence gas costs.

To further understand transaction fee trends and predict future fluctuations, two
time-series forecasting models—ARIMA and LSTM—were implemented. The
ARIMA model was used for short-term forecasting and is defined by the
equation [21]:

Yi=c+ p1Voa+ Vet .+ QY+ 60 + 01601 + 01604 (2)
+ 0602+ ...+ 04604

Y; is the transaction fee at the time t, ¢ a constant, ¢, are autoregressive
coefficients, 6, are moving average coefficients, and ¢ is the error term.

However, due to the nonlinear and highly volatile nature of Ethereum
transaction fees, a deep learning-based Long Short-Term Memory (LSTM)
model was also trained to capture complex patterns and dependencies in the
dataset. The LSTM model updates its hidden state using the following equations

[22]:
fo=0Ws - [he-1 x| + by) 3)
i =a(W; - [he_yxe] + by) (4)
C; = tanh(W, - [he_y x| + b¢) (5)
Co=fr Cooq+ i~ C (6)
or = (W, - [he_yx¢] + bo) (7)
h; = o - tanh(C,) (8)

ft is the forget gate, i, is the input gate, C, is the cell state, o, is the output gate,
W and b represents weights and biases, and h; is the hidden state at the time
t. The LSTM model was trained using 80% of the dataset for training and 20%
for testing, with optimization performed using the Adam optimizer and Mean
Squared Error (MSE) loss function:

MSE = 1 31, (y; - Gy)’ (9)

Model performance was evaluated using Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and R2 Score, with the following formulas:

RMSE = [LS1,(U: — 002 (10)
MAE =~ 37|y, - Gy (11)
(DN 12

RE=1 2(Yi-9)? 12

The results indicate that LSTM outperformed ARIMA, achieving a lower RMSE
(0.09 vs. 0.15) and a higher R2 score (0.91 vs. 0.82), suggesting that deep
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learning methods provide superior accuracy in gas fee forecasting.

In addition to predictive modeling, anomaly detection techniques were
employed to identify unusual transaction fee patterns. The study utilized
Isolation Forest and Autoencoder Neural Networks to detect transactions with
excessively high fees that deviated significantly from normal fee distributions.
The Isolation Forest anomaly score for a given transaction x is calculated as:

_E(h(x))
S(x,n)=2 <cm (13)

E(h(x)) is the path length of x the isolation tree, E(h(x)) is the expected path
length, c(n) is a normalization factor.

The results showed that transactions with fees exceeding 2.5 ETH were
frequently outliers, with further analysis indicating that these transactions were
often linked to front-running bots, PGA, and transaction ordering manipulation.
This highlights the presence of strategic bidding behaviors in Ethereum’s
transaction fee market, reinforcing the need for more transparent and efficient
fee mechanisms. The algorithm 1 outlines an integrated analytical pipeline that
combines statistical correlation analysis, ARIMA and LSTM-based time-series
forecasting, and anomaly detection to examine and predict Ethereum
transaction fee dynamics.

Algorithm 1 Hybrid Statistical-Machine Learning Pipeline for Blockchain Transaction
Fee Analysis
Pseudocode (with Corrected Mathematical Formulas)
1. Collect dataset
D = {xy, x5, ..., xy }from Ethereum APIs and blockchain explorers.
2. Preprocess data
o Convert timestamps:

t; = datetime(ts;)
o Remove missing and duplicate records
o Filter unrealistic fees:
fmin < feei < fmax
o Create engineered feature:
fee;

size;

fee_per_byte, =

o Normalize skewed distributions using:
x; = log (x; + &)
3. Compute descriptive statistics
Calculate:
u, o, median, min , max for all key variables.
4. Pearson correlation
For variables Xand Y:

YLK —D -1

" sne-or [T m-n

5. Build time-series
TS, = average fee at time interval t
6. ARIMA modeling
Use the standard ARIMA(p, d, q) model:
4

q
Yt =c+ Z ¢kyt—k + Z ngt—j + Et
k=1 j=1

Train on 80% of the series, forecast remaining 20%.
7. LSTM modeling
Apply LSTM gate equations:
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fr = o(Wrlhe—1, x¢] + by)
iy = o(Wilhe—1, %] + by)
C; = tanh (W, [h¢—y, %] + bc)
G=f0OCG1+i:OC
oy = o(Wp[he—1, %] + by)
hy = o O tanh (Cy)
Train using Mean Squared Error:

1w _
MSE =" (¥ = 7)?
i=1

8. Evaluate predictions

RMSE =
n
1 ~
MAE=—ZIY1-—Y1-|
ni=1 .
(2 0%

(Y - ¥)?
9. Anomaly detection (Isolation Forest)
Isolation score:
_E(h(x)
Sx)y=2 <m

A transaction is an anomaly if S(x)exceeds the threshold.
10. Identify outlier transactions
Select all records where:
fee; > 2.5 ETH

In summary, this study integrates statistical analysis, correlation studies, time-
series forecasting, and anomaly detection to examine Ethereum’s transaction
fee dynamics. By leveraging both econometric models (ARIMA) and deep
learning-based models (LSTM), the study provides a data-driven approach to
understanding gas fee variations and optimizing transaction costs. The insights
gained from this research contribute to the ongoing discourse on Ethereum’s
scalability, transaction efficiency, and fee predictability. The next section
presents the results and key findings from this analysis.

Result and Discussion

Analyzing transaction fee patterns in the Ethereum blockchain reveals
significant variability, with periods of high volatility and occasional spikes. A
temporal examination of the dataset indicates that transaction fees tend to
increase during times of network congestion, which is likely influenced by the
number of active transactions and gas price fluctuations. The distribution of
transaction fees is skewed, with the majority of transactions incurring relatively
low costs, while a small percentage experience exceptionally high fees. This
pattern suggests that Ethereum's fee structure is largely dictated by competitive
bidding mechanisms, such as maximal extractable value (MEV) and priority-
based block inclusion strategies. Table 1 presents the statistical summary of
transaction fees in Ethereum, highlighting the mean, median, standard
deviation, and extreme values observed in the dataset.

Table 1 Transaction Fee Statistics

Metric Value (ETH)

Mean Transaction Fee 0.0342
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Median Transaction Fee 0.0008
Standard Deviation 0.1123
Max Transaction Fee 2.5150
Min Transaction Fee 0.0000

To further investigate the relationship between transaction fees and blockchain
efficiency, we examined the correlations between TxnFee(ETH), Txnsize, Block
Density (%), and Block Score. The results indicate a strong positive correlation
between transaction fees and block density (r = 0.75, p < 0.01), suggesting that
higher fees coincide with periods of increased block utilization. Additionally,
transaction size exhibits a moderate positive correlation with fees (r = 0.58, p <
0.01), implying that larger transactions tend to incur higher costs. However, the
correlation between transaction fees and block score remains relatively weak (r
~ 0.31, p < 0.05), indicating that blockchain efficiency is not solely determined
by transaction fees but is also influenced by other factors, such as validator
incentives and overall network congestion. Table 2 presents the correlation
matrix, demonstrating the relationships between transaction fees and key
blockchain metrics.

Table 2 Correlation Matrix of Transaction Fees and Blockchain Metrics

Metric TxnFee(ETH) Txnsize Block Density (%) Block Score
TxnFee(ETH) 1.000 0.58 0.75 0.31

Txnsize 0.58 1.000 0.62 0.28

Block Density (%) 0.75 0.62 1.000 0.45

Block Score 0.31 0.28 0.45 1.000

Furthermore, a detailed analysis of block density reveals significant variations
in blockchain utilization across different transaction periods. The dataset shows
a mean block density of 2054.7%, meaning that, on average, blocks are utilized
more than twice their intended capacity. This high average suggests that
Ethereum’s block space is frequently congested, leading to increased
competition for transaction inclusion. The median block density of 1985.0%
further supports this observation, indicating that at least half of the blocks
operate at nearly twice their expected size. Such consistently high block
utilization implies that network demand often exceeds available space, forcing
users to pay higher gas fees to prioritize their transactions. The significant
fluctuations in block density, represented by a standard deviation of 823.4%,
highlight periods of extreme congestion interspersed with lower-activity phases.
These fluctuations may be caused by spikes in Decentralized Application
(DApp) activity, NFT drops, DeFi trading surges, or high-frequency trading,
which all contribute to unpredictable transaction loads on the Ethereum network.

Moreover, examining the maximum and minimum block density values provides
deeper insights into the network’s efficiency and congestion patterns. The
dataset records a maximum block density of 3896.0%, which indicates that
during peak periods, blocks are nearly four times their normal utilization,
potentially leading to transaction delays, higher gas fees, and inefficiencies in
transaction processing. Such extreme cases highlight the strain that large-scale
transactions and network events can place on Ethereum’s infrastructure. On the
other hand, the minimum block density of 512.0% suggests that at times,
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network demand is significantly lower, resulting in underutilized blocks. These
wide fluctuations underscore the dynamic nature of Ethereum’s transaction
volume and reinforce the necessity for adaptive fee mechanisms, improved
block space allocation, and the adoption of layer-2 scaling solutions to mitigate
congestion and enhance overall blockchain performance. Table 3 presents
these key statistics for block density, providing a comprehensive numerical
summary of these observations.

Table 3 Block Density Statistics

Metric Value (%)
Mean Block Density 2054.7
Median Block Density 1985.0
Standard Deviation 823.4
Max Block Density 3896.0
Min Block Density 512.0

Transaction size is another critical factor influencing transaction fees on the
Ethereum blockchain. The dataset reveals an average transaction size of 71.8,
with a median of 72.0, indicating that most transactions exhibit a relatively
uniform size. This suggests that the majority of Ethereum transactions fall within
a narrow range of data consumption, likely comprising standard transfers of
ETH and ERC-20 tokens or interactions with common smart contracts. The
relatively small variation between the mean and median values implies a normal
distribution of transaction sizes, where typical transactions remain within a
predictable range. This uniformity could be attributed to gas optimization
strategies employed by developers, ensuring that smart contract interactions
remain cost-efficient. Additionally, users may aim to minimize transaction size
to reduce gas fees, further reinforcing this pattern. However, the dataset also
records a maximum transaction size of 250, indicating the presence of
significantly larger transactions. These outliers could be associated with
complex smart contract executions, batch transactions, or high-volume
decentralized finance (DeFi) operations, where multiple transfers or interactions
occur within a single block. Such large transactions contribute to higher gas
costs due to increased computational requirements and memory usage. The
presence of these outliers suggests that, while most transactions remain within
an optimized size range, there are instances where network congestion and
transaction fees spike due to unusually large transactions. This reinforces the
importance of scalability solutions and efficient gas fee mechanisms, as larger
transactions can disproportionately impact overall network performance. Table
4 provides a detailed summary of transaction size statistics, offering further
insight into the distribution of transaction volumes.

Table 4 Transaction Size Statistics

Metric Value
Mean Transaction Size 71.8
Median Transaction Size 72.0
Standard Deviation 20.6
Max Transaction Size 250
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Min Transaction Size 12

A time series analysis using ARIMA and LSTM networks was conducted to
predict future transaction fee trends. The ARIMA model provides short-term
forecasting with reasonable accuracy (RMSE = 0.15), whereas the LSTM model
captures long-term fee patterns more effectively (RMSE = 0.09). The results
highlight a cyclical pattern in transaction fees, with periodic spikes aligning with
increased on-chain activity. These fluctuations correlate with major blockchain
events, including NFT drops, DeFi protocol surges, and large token movements.
Such predictive insights can help Ethereum users and developers optimize
transaction timing to minimize costs. Further anomaly detection using Isolation
Forest identified outlier transactions that exhibit disproportionately high fees.
These anomalies are often associated with high-priority transactions executed
during congestion, smart contract interactions requiring extensive
computational resources, and potentially suspicious activities such as wash
trading or transaction manipulation. The detection of such anomalies provides
valuable insights into inefficiencies in Ethereum’s gas fee mechanism and
highlights areas for potential optimization. In summary, our analysis confirms
that Ethereum transaction fees are highly dynamic and influenced by multiple
network parameters, including block density, transaction size, and congestion
levels. While Ethereum’s current fee model aims to optimize network efficiency,
periodic cost spikes continue to impact user accessibility and transaction
prioritization. Future advancements, such as EIP-1559 optimizations and Layer
2 scaling solutions, are expected to enhance fee predictability and overall
blockchain performance, ensuring a more efficient and cost-effective ecosystem
for users and developers alike.

Discussion

The findings from this study provide significant insights into the transaction fee
patterns within the Ethereum blockchain and their impact on overall network
efficiency. The analysis confirms that transaction fees are highly dynamic,
exhibiting strong correlations with block density, transaction size, and network
congestion. The consistently high block density (mean: 2054.7%) suggests that
the Ethereum network frequently operates under high demand, which drives up
transaction fees due to competition for limited block space. The correlation
analysis further reinforces this, showing a strong positive relationship (r = 0.75,
p < 0.01) between transaction fees and block density, indicating that users often
pay higher fees to ensure their transactions are processed in congested blocks.
The time series analysis of transaction fees reveals periodic fluctuations,
aligning with well-documented blockchain activity cycles such as NFT releases,
DeFi yield farming spikes, and major smart contract interactions. This pattern
suggests that transaction fees are not purely random but are instead influenced
by predictable market trends and network events. The LSTM model
demonstrated a lower RMSE (0.09) compared to ARIMA (0.15), indicating its
superior ability to capture long-term fee trends and provide more accurate
forecasting. This highlights the potential for predictive modeling in gas fee
optimization, allowing Ethereum users and developers to better anticipate and
strategize transaction timings to minimize costs.

Another important finding is the high variability in transaction sizes, with an
average of 71.8 bytes but a maximum reaching 250 bytes. Larger transactions
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tend to incur higher fees (r = 0.58, p < 0.01), likely due to increased
computational complexity and storage requirements. This reinforces the notion
that transaction optimization strategies, such as gas-efficient contract design
and batching transactions, can significantly impact cost reduction. Additionally,
the presence of extreme outliers in transaction fees and sizes, detected through
anomaly detection techniques, suggests that certain network participants may
be engaging in non-standard activities, such as Priority Gas Auctions (PGA),
front-running, or wash trading, which could impact overall fee dynamics. These
findings align with previous studies on Ethereum’s gas fee mechanism and
scalability challenges. Studies on EIP-1559, for example, suggest that base fee
adjustments help regulate transaction costs, but the persistence of high fees
during congestion indicates that layer-2 solutions and sharding remain critical
for long-term scalability. The extreme block density fluctuations in the dataset
further highlight the need for more adaptive block space allocation mechanisms,
potentially through dynamic block size adjustments or off-chain scaling
solutions.

In practical terms, this research emphasizes the need for more efficient
transaction scheduling and batching strategies, particularly for users interacting
with high-demand smart contracts and DeFi protocols. Developers can leverage
predictive fee models to design cost-efficient DApp interactions, while Ethereum
users can utilize historical fee trend analysis to determine optimal transaction
times. Furthermore, regulators and policymakers should consider these findings
when assessing Ethereum’s role in financial markets and decentralized
economies, particularly concerning fair access to transaction processing and
mitigation of front-running risks. In summary, while Ethereum's fee structure is
designed to optimize block space allocation, periodic cost spikes and
congestion-driven fee inflation remain key challenges. The continued
development of Ethereum 2.0, L2 solutions, and MEV mitigation strategies will
play a crucial role in ensuring that Ethereum remains a scalable, efficient, and
economically sustainable blockchain ecosystem.

Conclusion

This study provides a comprehensive analysis of transaction fee patterns in the
Ethereum blockchain and their impact on network efficiency. The findings reveal
that transaction fees are highly dynamic and significantly influenced by block
density, transaction size, and network congestion. The analysis indicates that
Ethereum frequently operates under high demand, leading to increased
transaction fees as users compete for limited block space. The strong positive
correlation between transaction fees and block density (r = 0.75) suggests that
during periods of heavy network usage, fees rise sharply, reinforcing the
competitive nature of Ethereum’s bidding mechanism. Additionally, transaction
size plays a crucial role in determining fees, with larger transactions generally
incurring higher costs due to their greater computational complexity and storage
requirements. The time series analysis of transaction fees demonstrates
cyclical patterns, with noticeable spikes aligned with major blockchain events
such as NFT launches, DeFi trading surges, and high-volume smart contract
interactions. The LSTM model outperformed ARIMA in predicting transaction
fee trends, indicating that deep learning-based forecasting can be a valuable
tool for optimizing transaction timing and gas fee management. Furthermore,
anomaly detection methods identified a subset of transactions with
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exceptionally high fees, which may be linked to priority gas auctions, front-
running strategies, or inefficient smart contract executions. These findings
highlight the persistent challenges in Ethereum’s fee structure, despite the
implementation of EIP-1559, which was designed to improve fee predictability.
While Ethereum's transition to Proof-of-Stake and Layer-2 solutions has
partially alleviated congestion issues, transaction fee spikes and network
inefficiencies remain key concerns for users and developers. The study
underscores the need for further optimizations in Ethereum’s fee market,
scalability enhancements, and fairer transaction processing mechanisms to
improve overall blockchain efficiency.

Although this study provides valuable insights into Ethereum's transaction fee
dynamics, several areas require further exploration. Future research should
incorporate additional blockchain metrics, such as gas price fluctuations, and
validator behavior, to refine the understanding of fee determinants. A
comparative study across different blockchain networks, including Binance
Smart Chain, Solana, and Avalanche, could provide a broader perspective on
transaction fee efficiency and highlight best practices for scalability.
Furthermore, the growing adoption of Layer-2 scaling solutions, such as
Optimistic Rollups and zk-Rollups, warrants an in-depth investigation into their
long-term impact on Ethereum’s fee structure and transaction throughput.
Another promising direction for future work is the application of advanced
predictive modeling techniques, such as reinforcement learning and deep
learning algorithms, to enhance transaction fee forecasting. Developing real-
time predictive models could help users optimize transaction timing and
minimize costs. Additionally, further analysis is needed to assess the
implications of Miner Extractable Value (MEV), front-running strategies, and gas
wars, which can create inefficiencies and fairness concerns in Ethereum’s
transaction ordering process. Future studies could also explore simulation-
based network optimization, modeling different congestion scenarios to
evaluate adaptive block size policies and their potential to improve network
performance. By addressing these research directions, future work can
contribute to the development of more efficient, scalable, and cost-effective
blockchain ecosystems. Continued improvements in Ethereum’s fee
mechanism, scaling solutions, and transaction processing fairness will be
crucial in ensuring its long-term viability as a leading decentralized platform.
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