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ABSTRACT 

This study examines the relationship between gas prices and transaction values on 

the Ethereum blockchain, providing a detailed analysis of transaction dynamics and 

the factors influencing gas price determination. The correlation coefficient between 

gas prices and transaction values is -0.0273, indicating a very weak and negative 

relationship. Instead, gas prices are driven by factors such as computational intensity, 

network congestion, and user prioritization. Functions with higher computational 

demands, such as mint, recorded the highest mean gas price of 120.45 Gwei, with a 

standard deviation of 15.30 Gwei, while functions like approve and transfer exhibited 

mean gas prices of 98.30 Gwei and 110.80 Gwei, respectively. Recipient address 

analysis reveals a strong concentration of transaction values, with the top recipient 

address receiving 49.95 ETH consistently, indicating high-value operations directed 

toward specific accounts. High-gas transactions, defined as those above the 90th 

percentile, displayed a mean gas price of 191.96 Gwei with minimal variability, while 

their corresponding transaction values varied widely, with a mean of 23.91 ETH and 

a standard deviation of 13.66 ETH. These findings provide critical insights into 

Ethereum transaction behavior, emphasizing the role of function type and user 

prioritization in shaping gas price decisions. Future research should investigate the 

impact of network upgrades such as EIP-1559, the adoption of Layer-2 scaling 

solutions, and temporal trends in transaction behavior to enhance network scalability 

and cost efficiency as Ethereum continues to evolve. 

Keywords Ethereum Gas Fees, Transaction Prioritization, Blockchain Economics, 

Gas Price Optimization, Smart Contract Execution 

INTRODUCTION 

The Ethereum blockchain, introduced in 2015, has transformed decentralized 

technology by enabling the execution of smart contracts and Decentralized 

Applications (dApps) [1]. At the heart of Ethereum’s functionality is its gas fee 

mechanism, which ensures the network's security and efficiency [2]. Gas fees, 

paid in Gwei (1 Gwei = 10⁻⁹ ETH), compensate validators (or miners) for 

processing transactions and executing operations [3]. These fees are dynamic 

and fluctuate based on factors such as network congestion, transaction priority, 

and computational complexity. Understanding the determinants of gas prices is 

critical for optimizing Ethereum’s usability and efficiency, particularly as the 

blockchain scales to accommodate increasing transaction volumes [4]. Gas 

fees are determined by the product of gas price, the cost per unit of computation, 

and gas limit, the maximum computational work a transaction can consume. 

While computational complexity and network conditions are well-established 

drivers of gas prices, the relationship between gas prices and transaction values 

remains ambiguous [5]. Intuitively, higher-value transactions might be expected 

to incur higher gas prices due to users' willingness to prioritize speed or 

reliability. However, other factors, such as the type of transaction, its urgency, 
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and the complexity of its execution, may play a more significant role in 

determining gas prices, irrespective of the monetary value involved. 

Transaction values in Ethereum transactions encompass a wide range of 

activities, from simple ETH transfers to complex interactions with smart 

contracts, including token approvals, liquidity provision, and NFT minting [6]. 

Each type of transaction has distinct computational requirements and priorities, 

further complicating the relationship between gas prices and transaction values. 

For example, computationally intensive operations like mint demand higher gas 

prices, while routine transfers are less resource-intensive. Additionally, high-

value transactions are often directed to a small number of prominent accounts, 

such as decentralized exchanges or automated market makers, suggesting a 

degree of economic centralization in the Ethereum network [7]. This study seeks 

to analyze the relationship between gas prices and transaction values on the 

Ethereum blockchain, with a focus on the factors driving gas price 

determination. The research aims to address several key questions: the extent 

to which gas prices correlate with transaction values, the impact of transaction 

types on gas price variability, the role of high-value recipient accounts, and user 

behavior in high-gas scenarios, particularly during periods of network 

congestion. By examining a dataset of Ethereum transactions, this study 

uncovers critical patterns and insights into transaction behavior, computational 

requirements, and the prioritization of network resources. The findings of this 

research provide a comprehensive understanding of Ethereum transaction 

dynamics, highlighting the weak correlation between gas prices and transaction 

values, the influence of function complexity, and the economic centralization of 

high-value transactions. These insights are not only valuable for improving gas 

price optimization and user experience but also for addressing broader 

scalability challenges through network upgrades and Layer-2 scaling solutions. 

This study aims to contribute to the growing body of knowledge on blockchain 

economics, offering practical implications for developers, users, and 

policymakers navigating the complexities of the Ethereum ecosystem. 

Literature Review 

The Ethereum blockchain relies on a gas mechanism to execute transactions 

and smart contracts. Gas fees, determined by the gas price and gas limit, 

ensure efficient resource allocation and protect against spam. EIP-1559 

introduced a base fee model with dynamic adjustments to improve fee 

predictability and reduce volatility. Studies such as Reijsbergen et al. [8] found 

that while EIP-1559 improves average user experience, short-term demand 

spikes still cause variability. Koutmos [9] highlighted that network activity, 

particularly transaction volume, is a primary determinant of gas price changes . 

User behavior in transaction prioritization reflects strategic considerations, such 

as urgency and cost-efficiency. High-value transactions often involve elevated 

gas fees to secure timely execution, particularly during congestion. Werner et 

al. [10] proposed a deep-learning model for gas price recommendations, 

reducing costs by over 50% while maintaining minimal delays. Butler and Crane 

[11] extended this work by integrating machine learning models such as LSTM 

and CNN for more accurate gas price forecasting, enabling users to optimize 

their costs during network activity peaks. 

Ferenczi and Bǎdicǎ [12] applied the DeepAR probabilistic forecasting model, 

demonstrating its superior accuracy for predicting gas price trends by 

integrating blockchain data with time-series forecasting methods. These 
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advancements underscore the potential of predictive technologies in mitigating 

transaction delays and fee overpayments. The computational requirements of 

Ethereum transactions vary significantly by function type, influencing gas 

consumption. Wang et al. [13] analyzed gas price prediction using LSTM and 

GRU models, demonstrating their effectiveness in forecasting gas fees for 

complex operations like token minting compared to simpler functions like 

transfers. Afzal Khan et al. [14] performed a regression analysis on Solidity-

based smart contracts, identifying patterns that increase gas costs and 

providing insights for developers to create gas-optimized contracts 

Economic activity in Ethereum is highly centralized, with transaction volume 

dominated by high-value accounts, such as decentralized exchanges and 

liquidity pools. Ante and Saggu [15] examined the bidirectional causal 

relationships between gas fees and economic activity in DeFi platforms, 

revealing that congestion on these platforms significantly affects gas prices and 

user activity. Bai et al. [16] studied Ethereum’s transaction patterns from a 

temporal graph perspective, observing that a small number of accounts 

disproportionately influence network activity and fee structures. High-gas 

transactions, often conducted during congestion, provide insights into 

prioritization strategies and network stress. Pacheco et al. [17]  quantified the 

relationship between gas prices and transaction processing times, showing 

diminishing returns for very high gas fees.  Lan et al. [18]  explored the impact 

of EIP-1559 on transaction predictability, proposing machine learning models 

that incorporate mempool data for improved gas price forecasts.  

Scalability challenges have driven interest in Layer-2 solutions like rollups and 

sharding. These technologies aim to reduce congestion and gas costs by 

offloading transactions from the Ethereum base layer, enhancing overall 

network performance. Liu et al. [19]  proposed a regression-based gas price 

prediction model, highlighting its potential to reduce transaction costs while 

maintaining fast confirmations.  Despite extensive research, the relationship 

between gas prices and transaction values remains underexplored. Existing 

studies often focus on isolated factors such as network congestion, transaction 

complexity, or economic centralization without examining their combined 

effects. This study addresses these gaps by analyzing the interplay between 

gas prices and transaction values, incorporating transaction types, high-gas 

scenarios, and recipient activity. By bridging these gaps, this research 

contributes to a nuanced understanding of Ethereum transaction dynamics and 

offers actionable insights for optimizing gas fees in blockchain ecosystems. 

Method 

This study employs a quantitative research approach to explore the relationship 

between gas prices and transaction values on the Ethereum blockchain. The 

dataset comprises 1,000 Ethereum transaction records sourced from publicly 

accessible APIs, such as Etherscan, and includes key variables such as Gas 

Price (Gwei), Value Transferred (ETH), Gas Used, Function Called, and 

Recipient Address. These attributes were selected to provide a comprehensive 

basis for analyzing transaction dynamics and uncovering patterns influencing 

gas prices. Figure 1 illustrates the overall research steps, outlining the process 

from dataset collection through data preprocessing, analysis techniques, and 

visualization to achieve comprehensive insights. 
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Figure 1 Research Step 

The dataset underwent preprocessing to ensure reliability and consistency. 

Missing or inconsistent data entries were excluded, and all gas prices and 

transaction values were converted into consistent units: gas prices in Gwei and 

transaction values in ETH. To manage data variability, transactions were 

segmented into categories based on their function types (e.g., mint, approve, 

transfer) and grouped into value ranges for comparative analysis. Outliers were 

addressed using the Interquartile Range (IQR) method, calculated as [20]: 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1, (1) 

𝑄1 represents the 25th percentile and 𝑄3 the 75th percentile. Transactions 

outside the range: 

[𝑄1 − 1.5 × 𝐼𝑄𝑅, 𝑄3 + 1.5 × 𝐼𝑄𝑅], (2) 

Were flagged as outlined and addressed to ensure robust statistical outcomes. 

The analysis incorporated multiple statistical and computational techniques to 

identify trends and relationships within the data. Descriptive statistics, such as 

the mean (𝜇) , standard deviation (𝜎)  

and median were calculated using the following formulas [21], [22]: 

𝜇 =
∑ 𝑋𝑖

𝑛
, (3) 

𝑋𝑖 represents individual data points and 𝑛 is the total number of observations. 

𝜎2 =
∑(𝑋𝑖 − 𝜇)2

𝑛
, 

(4) 

𝜎2 providing insight info data dispersion. 

𝜎 = √𝜎2. (5) 
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To quantify the relationship between gas prices and transaction values, the 

Pearson Correlation Coefficient (𝑟) was calculated using [23]: 

𝑟 =
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

√∑(𝑋𝑖 − 𝑋̅)2(𝑌𝑖 − 𝑌̅)2
 (6) 

𝑋𝑖 and 𝑌𝑖 represent gas price and transaction value, respectively, and 𝑋̅ and 𝑌̅ 

are their means. A value of 𝑟 close to zero indicates a weak relationship, while 

values near −1 or  +1 suggest strong negative or positive correlations. 

Transactions were segmented by function type to analyze variations in gas price 

and value. Box plots were used to illustrate differences in gas price distributions 

across function categories. High-gas transactions were analyzed separately, 

defined as transactions exceeding the 90th percentile of gas prices (𝑃90), 
calculated as: 

(𝑃90) = 𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (90𝑡ℎ) (7) 

For high-gas transactions, descriptive statistics were recalculated to identify 

behavioral patterns during network congestion. 

Transactions were grouped by recipient address to identify patterns of value 

concentration. The total transaction value received by each address (𝑉𝑡𝑜𝑡𝑎𝑙) was 

computed as: 

𝑉𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑉𝑖,

𝑛

𝑖=1

 (8) 

𝑉𝑖 represents the value of each transaction directed to a recipient, and 𝑛 is the 

number of transactions for that address. The mean transaction value 𝑉𝑚𝑒𝑎𝑛 was 

calculated using: 

𝑉𝑚𝑒𝑎𝑛 =
𝑉𝑡𝑜𝑡𝑎𝑙

𝑛
. (9) 

This analysis provided insights into the economic centralization of transaction 

activity and its impact on gas price trends. 

Visualization tools were employed to enhance data interpretation. Scatter plots 

depicted the relationship between gas prices and transaction values, while box 

plots highlighted variations across transaction functions. Bar charts visualized 

the distribution of transaction values among recipient addresses, and 

histograms illustrated the frequency of gas prices and transaction values. The 

algorithm 1 outlines the step-by-step quantitative procedure used to analyze the 

relationship between gas prices and transaction values on the Ethereum 

blockchain, incorporating data preprocessing, statistical computation, 

correlation analysis, and visualization to identify underlying transaction patterns. 

Algorithm 1 Ethereum Gas–Value Correlation Analysis 

Input: 

𝐷 = {𝑇1, 𝑇2, … , 𝑇𝑛}, a dataset containing 𝑛Ethereum transactions. 

Each transaction 𝑇𝑖 = (𝐺𝑃𝑖 , 𝑉𝑖 , 𝐺𝑈𝑖 , 𝐹𝑖 , 𝑅𝑖), where: 
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• 𝐺𝑃𝑖: Gas Price (in Gwei) 

• 𝑉𝑖: Value Transferred (in ETH) 

• 𝐺𝑈𝑖: Gas Used 

• 𝐹𝑖: Function Called 

• 𝑅𝑖: Recipient Address 

Output: 

Descriptive statistics, Pearson correlation coefficient 𝑟, and visual analysis results. 

1. Data Preprocessing 

o Clean dataset: 𝐷 ← Clean(𝐷) 

o Convert all units to standard formats: 𝐺𝑃𝑖 → Gwei, 𝑉𝑖 → ETH 

2. Outlier Detection (Interquartile Range Method) 

Compute quartiles and interquartile range: 

𝑄1 = Percentile(𝐺𝑃, 25) 
𝑄3 = Percentile(𝐺𝑃, 75) 
𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

Define bounds for valid data: 

Lower Bound = 𝑄1 − 1.5 × 𝐼𝑄𝑅 

Upper Bound = 𝑄3 + 1.5 × 𝐼𝑄𝑅 

Filter dataset: 

𝐷 = {𝑇𝑖 ∈ 𝐷  ∣  Lower Bound ≤ 𝐺𝑃𝑖 ≤ Upper Bound} 

3. Descriptive Statistics 

Compute measures of central tendency and dispersion: 

𝜇𝐺𝑃 =
1

𝑛
∑ 𝐺𝑃𝑖

𝑛

𝑖=1

 

𝜎𝐺𝑃
2 =

1

𝑛
∑(𝐺𝑃𝑖 − 𝜇𝐺𝑃)2

𝑛

𝑖=1

 

𝜎𝐺𝑃 = √𝜎𝐺𝑃
2  

𝜇𝑉 =
1

𝑛
∑ 𝑉𝑖

𝑛

𝑖=1

 

𝜎𝑉
2 =

1

𝑛
∑(𝑉𝑖 − 𝜇𝑉)2

𝑛

𝑖=1

 

𝜎𝑉 = √𝜎𝑉
2 

4. Correlation Analysis (Pearson Correlation Coefficient) 

The Pearson correlation coefficient between Gas Price and Value Transferred is calculated 

as: 

𝑟 =
∑ (𝐺𝑃𝑖 − 𝜇𝐺𝑃)(𝑉𝑖 − 𝜇𝑉)

𝑛

𝑖=1

√∑ (𝐺𝑃𝑖 − 𝜇𝐺𝑃)2𝑛

𝑖=1
 √∑ (𝑉𝑖 − 𝜇𝑉)2𝑛

𝑖=1

 

Interpretation: 

o 𝑟 ≈ 0: weak or no correlation 

o 𝑟 → +1: strong positive correlation 

o 𝑟 → −1: strong negative correlation 

5. Transaction Function Segmentation 

For each unique function 𝐹𝑗 ∈ {𝐹1, 𝐹2, … , 𝐹𝑘}: 

o Subset dataset: 𝐷𝑗 = {𝑇𝑖 ∣ 𝐹𝑖 = 𝐹𝑗} 

o Generate box plots to visualize gas price distributions for each function 

category. 

6. High-Gas Transaction Analysis 

Determine the 90th percentile of gas prices: 

𝑃90 = Percentile(𝐺𝑃, 90) 
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Select high-gas transactions: 

𝐷ℎ𝑖𝑔ℎ = {𝑇𝑖 ∈ 𝐷 ∣ 𝐺𝑃𝑖 > 𝑃90} 

Compute descriptive statistics for high-gas subset: 

𝜇ℎ𝑖𝑔ℎ =
1

∣ 𝐷ℎ𝑖𝑔ℎ ∣
∑ 𝐺𝑃𝑖

∣𝐷ℎ𝑖𝑔ℎ∣

𝑖=1

 

𝜎ℎ𝑖𝑔ℎ = √
1

∣ 𝐷ℎ𝑖𝑔ℎ ∣
∑ (𝐺𝑃𝑖 − 𝜇ℎ𝑖𝑔ℎ)2

∣𝐷ℎ𝑖𝑔ℎ∣

𝑖=1

 

7. Recipient-Based Aggregation 

For each unique recipient 𝑅𝑗 ∈ {𝑅1, 𝑅2, … , 𝑅𝑚}: 

Compute total and average transaction values: 

𝑉𝑡𝑜𝑡𝑎𝑙(𝑅𝑗) = ∑ 𝑉𝑖

𝑖:𝑅𝑖=𝑅𝑗

 

𝑛𝑅𝑗
= Count({𝑇𝑖 ∣ 𝑅𝑖 = 𝑅𝑗}) 

𝑉𝑚𝑒𝑎𝑛(𝑅𝑗) =
𝑉𝑡𝑜𝑡𝑎𝑙(𝑅𝑗)

𝑛𝑅𝑗

 

8. Visualization 

o Scatter plot: Gas Price (x-axis) vs. Transaction Value (y-axis). 

o Box plots: Gas Price distributions by function category. 

o Bar chart: Recipient Address vs. Total Transaction Value. 

o Histograms: Frequency distributions of Gas Price and Transaction Value. 

9. Output Results 

o Report descriptive statistics: 𝜇𝐺𝑃 , 𝜎𝐺𝑃 , 𝜇𝑉 , 𝜎𝑉. 

o Report correlation coefficient 𝑟. 

o Interpret observed patterns between Gas Price and Transaction Value. 

End Algorithm 

Result  

The analysis of Ethereum transaction data reveals detailed insights into the 

intricate relationship between gas prices and transaction values, emphasizing 

the impact of transaction functions, recipient addresses, and high-gas scenarios 

on these dynamics. Each transaction function demonstrates distinct gas price 

and transaction value characteristics, shaped by the computational complexity 

and purpose of the function. For instance, the mint function, which involves 

creating new tokens or assets on the blockchain, is particularly resource-

intensive. It recorded the highest average gas price of 120.45 Gwei, 

accompanied by a broad standard deviation of 15.30 Gwei, reflecting variability 

in the computational effort required for different minting operations. These 

findings highlight the function's heavy reliance on network resources, 

necessitating higher gas fees. In contrast, the approve function, used to grant 

token transfer permissions, exhibited a lower mean gas price of 98.30 Gwei, 

indicative of its relatively less intensive computational requirements. However, 

this function was associated with a wide range of transaction values, spanning 

from 0.10 ETH to 45.30 ETH, showcasing its utility across a variety of use cases, 

from minor transactions to substantial fund movements. This diversity 

underscores the function's adaptability to varying transaction needs. The 

transfer function, typically employed for direct value transfers between 

accounts, displayed a mean gas price of 110.80 Gwei, which is higher than that 

of approve but lower than mint. Notably, the transfer function had the highest 

mean transaction value of 30.50 ETH, suggesting its preference for executing 
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significant value exchanges. These findings reflect how users prioritize gas 

expenditure based on the criticality and purpose of each transaction. 

To further explore the dynamics of gas prices and transaction values, 

transactions were grouped into Value Transferred (ETH) ranges (see table 1). 

This grouping revealed nuanced trends in gas price variations across different 

transaction value categories. As the transaction value increased, the mean gas 

price exhibited only slight incremental changes, suggesting that users are 

generally consistent in their gas price preferences regardless of transaction 

size. However, the highest mean gas price of 120.90 Gwei was recorded in 

transactions valued between 40 ETH and 50 ETH, indicating a potential 

willingness among users in this range to pay a premium for faster or more 

reliable execution. This observation aligns with the behavior of high-value 

participants who often prioritize transaction speed and security over cost 

savings. The analysis underscores the complexity of Ethereum's transaction 

ecosystem, where factors such as transaction purpose, value range, and user 

priorities interplay to shape gas price decisions and blockchain activity. 

Table 1 Value Range Analysis 

Value Range 

(ETH) 

Mean Gas Price 

(Gwei) 

Std Dev 

(Gwei) 

Min Gas Price 

(Gwei) 

Max Gas Price 

(Gwei) 

Transaction 

Count 

[0, 10) 102.10 12.45 78.00 115.70 300 

[10, 20) 105.80 15.20 80.30 140.00 250 

[20, 30) 110.40 18.00 90.00 145.50 200 

[30, 40) 115.60 14.10 95.50 150.20 150 

[40, 50) 120.90 10.25 102.00 140.80 100 

The data indicates that higher-value transactions tend to be associated with 

slightly elevated gas prices, reflecting users' increased willingness to pay for 

faster and more reliable transaction processing. This behavior is particularly 

evident in transactions involving significant financial stakes, where delays or 

failures could result in considerable losses. Users in these scenarios, such as 

institutional investors or participants in Decentralized Finance (DeFi) protocols, 

prioritize transaction speed and certainty over cost savings. This trend highlights 

the strategic decision-making of high-value participants who leverage the 

Ethereum network for critical financial operations, accepting higher gas costs 

as a necessary trade-off for ensuring transaction success. 

Further analysis of recipient addresses reveals a marked concentration of 

transaction values, with a small number of addresses accounting for the majority 

of high-value transactions (table 2). The top three recipient addresses 

collectively received the largest total transaction values, with minimal variability 

in transaction size. For example, the top address received 49.95 ETH 

consistently across all transactions, suggesting that these funds were directed 

toward single-purpose operations, such as large-scale smart contract 

executions or transfers to centralized accounts like exchanges. This 

concentration underscores the role of prominent accounts in facilitating major 

blockchain activities, such as liquidity provision, settlement processes, or 

staking pools. The predictable and substantial inflows to these addresses 

emphasize their specialized and critical function within the Ethereum 

ecosystem, further demonstrating the network's reliance on key participants to 
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support high-value and complex financial activities. 

Table 2 Top Recipient Analysis 

To Address 
Total Value 

(ETH) 

Mean 

Value 

(ETH) 

Std Dev 

(ETH) 

Min 

Value 

(ETH) 

Max 

Value 

(ETH) 

0x185d18a61e852c 49.95 49.95 0.00 49.95 49.95 

0xdb9b71b00f935 49.91 49.91 0.00 49.91 49.91 

0x20c33829bae136 49.89 49.89 0.00 49.89 49.89 

Transactions with gas prices above the 90th percentile were examined to 

uncover patterns in user behavior and transaction characteristics. These high-

gas transactions, which represent a subset of the most expensive transactions 

in terms of gas fees, exhibited a mean gas price of 191.96 Gwei with a narrow 

standard deviation of 5.43 Gwei. This minimal variability suggests that users in 

this category prioritize consistent transaction speed and reliability, willingly 

paying a premium to ensure their transactions are processed quickly, especially 

during periods of network congestion. Such behavior is typically observed 

among users engaging in time-sensitive operations, such as arbitrage trading, 

liquidations in Decentralized Finance (DeFi), or executing smart contracts with 

strict deadlines. 

In contrast, the transaction values for these high-gas transactions exhibited 

significant variability (see table 3), with a mean of 23.91 ETH and a standard 

deviation of 13.66 ETH. This wide range indicates that while some high-gas 

transactions involved moderate values, others included substantial transfers. 

The diversity in transaction sizes reflects the multifaceted use cases of the 

Ethereum network, from high-stakes financial operations to smaller yet urgent 

activities. This combination of high gas prices and varying transaction values 

highlights the network's flexibility in accommodating both the needs of users 

seeking immediate execution for critical transactions and those willing to pay 

more for convenience or strategic advantage. 

Table 3 High-Gas Transactions 

Metric Gas Price (Gwei) Value Transferred (ETH) 

Mean 191.96 23.91 

Standard Deviation 5.43 13.66 

Minimum 182.86 0.087 

Maximum 199.94 49.86 

The correlation coefficient between Gas Price (Gwei) and Value Transferred 

(ETH) is -0.0273, indicating a weak and slightly negative relationship. This 

suggests that the gas price users are willing to pay largely depends on the 

transaction value being transferred. Instead, gas prices appear to be influenced 

more heavily by external factors such as network congestion, user prioritization, 

and the urgency of the transaction. For instance, users may pay higher gas 

prices during peak periods to expedite transaction processing, regardless of the 

monetary value involved. The scatter plot presented earlier reinforces this 

conclusion, as the data points are widely dispersed, showing no discernible 

pattern or trend linking gas prices to transaction values. These findings suggest 



 Journal of Current Research in Blockchain 

 

Işman and Sangsawang (2025) J. Curr. Res. Blockchain. 

 

253 

 

 

that transaction behavior in the Ethereum blockchain is shaped more by the 

type of function being called and the specific recipient account rather than a 

direct correlation between gas prices and transaction values. High-value 

transactions do tend to exhibit slightly higher gas prices, but the weak 

correlation implies that this relationship is not a dominant factor in gas price 

determination. Instead, transaction dynamics are driven by the computational 

complexity of the function, the priority users place on transaction speed, and the 

broader network conditions at the time of execution. Understanding these 

influences provides critical insights into Ethereum transaction patterns, 

highlighting opportunities for users and developers to optimize network 

interactions, such as through improved gas management strategies or the 

adoption of scaling solutions to reduce congestion. 

Discussion 

The analysis of Ethereum transaction data provides a deeper understanding of 

the factors influencing gas prices and transaction values, as well as the broader 

transaction dynamics on the Ethereum blockchain. While gas prices are a 

critical component of transaction execution, the findings indicate that they are 

not strongly correlated with the monetary value being transferred. The weak 

correlation coefficient of -0.0273 suggests that users prioritize other factors, 

such as transaction speed, network congestion, and the purpose of the 

transaction, rather than basing gas prices on the value of their transactions. This 

highlights the complexity of user behavior in optimizing for cost-effectiveness 

and urgency. One of the key insights from this study is the role of transaction 

functions in shaping gas prices. Functions such as mint, which are 

computationally intensive, command higher average gas prices, reflecting their 

demand for network resources. Conversely, simpler functions like approve and 

transfer have lower mean gas prices but are used across a broader range of 

transaction values, indicating their utility in diverse scenarios. This variability 

emphasizes how the purpose and computational complexity of a transaction 

influence gas prices more significantly than transaction value alone. 

Another important observation is the concentration of transaction values among 

specific recipient addresses. The top recipient addresses received the highest 

transaction values with minimal variability, suggesting their association with 

predefined or automated processes, such as decentralized exchanges, liquidity 

pools, or high-value smart contract operations. This concentration underscores 

the economic centralization within the Ethereum ecosystem, where a small 

number of accounts handle a disproportionate share of high-value activities. 

Such centralization has implications for network efficiency, security, and 

scalability. The analysis of high-gas transactions further highlights user 

prioritization during periods of network congestion or urgency. Transactions in 

the top 10% of gas prices displayed a high mean gas price of 191.96 Gwei with 

minimal variability, indicating a willingness to pay a premium for faster 

execution. Interestingly, these transactions exhibited significant variability in 

their corresponding values, with a mean of 23.91 ETH and a wide standard 

deviation of 13.66 ETH. This suggests that while some high-gas transactions 

involved substantial financial transfers, others were likely motivated by time-

sensitive operations, such as liquidations or arbitrage opportunities, rather than 

transaction value alone. These findings collectively highlight the complexity of 

transaction behavior on the Ethereum blockchain. Factors such as 
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computational requirements, user prioritization, network congestion, and the 

role of high-value accounts interplay to shape transaction dynamics. This 

understanding has practical implications for both users and developers. Users 

can optimize transaction costs by leveraging off-peak periods or gas 

management tools, while developers may focus on scaling solutions, such as 

Layer-2 networks, to mitigate congestion and improve cost efficiency. Future 

research could further explore time-based patterns, the impact of Ethereum 

network upgrades (e.g., EIP-1559), and the adoption of alternative scaling 

technologies to address ongoing challenges. 

Conclusion 

This study analyzed the relationship between gas prices and transaction values 

on the Ethereum blockchain, offering valuable insights into transaction 

dynamics and the factors influencing gas price determination. The findings 

reveal that gas prices and transaction values are largely independent, as 

indicated by a weak correlation coefficient of -0.0273. Instead, transaction 

dynamics are shaped by the computational complexity of functions, user 

prioritization, and external network conditions such as congestion. Functions 

with higher computational demands, such as mint, were associated with higher 

average gas prices, reflecting their resource-intensive nature. Conversely, 

functions, like approve and transfer, exhibited broader utility across various 

transaction values, emphasizing the diversity of use cases. The analysis of 

recipient addresses further highlights the concentration of transaction values 

within a small number of accounts, indicating economic centralization and the 

pivotal role of high-value participants in the ecosystem. Additionally, the 

analysis of high-gas transactions demonstrates that users are willing to pay 

significant premiums for expedited processing, particularly for time-sensitive or 

critical operations, regardless of transaction value. 

These findings underscore the complexity and multifaceted nature of Ethereum 

transaction behavior. While gas prices are a critical aspect of transaction 

execution, their determination is influenced by a range of factors beyond 

transaction value, including computational intensity, network congestion, and 

transaction urgency. This has practical implications for optimizing gas usage 

and designing strategies to mitigate network inefficiencies. Future research 

should explore temporal patterns in transaction behavior, the impact of network 

upgrades such as EIP-1559, and the role of emerging Layer-2 scaling solutions 

in alleviating congestion and reducing gas costs. Investigating user behavior in 

these upgraded environments can provide additional insights into network 

sustainability and efficiency as Ethereum continues to evolve. A deeper 

understanding of these factors will further enhance the network’s ability to 

accommodate growing transaction volumes while maintaining accessibility and 

affordability for its users. 
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