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ABSTRACT

This study examines the relationship between gas prices and transaction values on
the Ethereum blockchain, providing a detailed analysis of transaction dynamics and
the factors influencing gas price determination. The correlation coefficient between
gas prices and transaction values is -0.0273, indicating a very weak and negative
relationship. Instead, gas prices are driven by factors such as computational intensity,
network congestion, and user prioritization. Functions with higher computational
demands, such as mint, recorded the highest mean gas price of 120.45 Gwei, with a
standard deviation of 15.30 Gwei, while functions like approve and transfer exhibited
mean gas prices of 98.30 Gwei and 110.80 Gwei, respectively. Recipient address
analysis reveals a strong concentration of transaction values, with the top recipient
address receiving 49.95 ETH consistently, indicating high-value operations directed
toward specific accounts. High-gas transactions, defined as those above the 90th
percentile, displayed a mean gas price of 191.96 Gwei with minimal variability, while
their corresponding transaction values varied widely, with a mean of 23.91 ETH and
a standard deviation of 13.66 ETH. These findings provide critical insights into
Ethereum transaction behavior, emphasizing the role of function type and user
prioritization in shaping gas price decisions. Future research should investigate the
impact of network upgrades such as EIP-1559, the adoption of Layer-2 scaling
solutions, and temporal trends in transaction behavior to enhance network scalability
and cost efficiency as Ethereum continues to evolve.

Keywords Ethereum Gas Fees, Transaction Prioritization, Blockchain Economics,
Gas Price Optimization, Smart Contract Execution

INTRODUCTION

The Ethereum blockchain, introduced in 2015, has transformed decentralized
technology by enabling the execution of smart contracts and Decentralized
Applications (dApps) [1]. At the heart of Ethereum’s functionality is its gas fee
mechanism, which ensures the network's security and efficiency [2]. Gas fees,
paid in Gwei (1 Gwei = 10~ ETH), compensate validators (or miners) for
processing transactions and executing operations [3]. These fees are dynamic
and fluctuate based on factors such as network congestion, transaction priority,
and computational complexity. Understanding the determinants of gas prices is
critical for optimizing Ethereum’s usability and efficiency, particularly as the
blockchain scales to accommodate increasing transaction volumes [4]. Gas
fees are determined by the product of gas price, the cost per unit of computation,
and gas limit, the maximum computational work a transaction can consume.
While computational complexity and network conditions are well-established
drivers of gas prices, the relationship between gas prices and transaction values
remains ambiguous [5]. Intuitively, higher-value transactions might be expected
to incur higher gas prices due to users' willingness to prioritize speed or
reliability. However, other factors, such as the type of transaction, its urgency,
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and the complexity of its execution, may play a more significant role in
determining gas prices, irrespective of the monetary value involved.
Transaction values in Ethereum transactions encompass a wide range of
activities, from simple ETH transfers to complex interactions with smart
contracts, including token approvals, liquidity provision, and NFT minting [6].
Each type of transaction has distinct computational requirements and priorities,
further complicating the relationship between gas prices and transaction values.
For example, computationally intensive operations like mint demand higher gas
prices, while routine transfers are less resource-intensive. Additionally, high-
value transactions are often directed to a small number of prominent accounts,
such as decentralized exchanges or automated market makers, suggesting a
degree of economic centralization in the Ethereum network [7]. This study seeks
to analyze the relationship between gas prices and transaction values on the
Ethereum blockchain, with a focus on the factors driving gas price
determination. The research aims to address several key questions: the extent
to which gas prices correlate with transaction values, the impact of transaction
types on gas price variability, the role of high-value recipient accounts, and user
behavior in high-gas scenarios, particularly during periods of network
congestion. By examining a dataset of Ethereum transactions, this study
uncovers critical patterns and insights into transaction behavior, computational
requirements, and the prioritization of network resources. The findings of this
research provide a comprehensive understanding of Ethereum transaction
dynamics, highlighting the weak correlation between gas prices and transaction
values, the influence of function complexity, and the economic centralization of
high-value transactions. These insights are not only valuable for improving gas
price optimization and user experience but also for addressing broader
scalability challenges through network upgrades and Layer-2 scaling solutions.
This study aims to contribute to the growing body of knowledge on blockchain
economics, offering practical implications for developers, users, and
policymakers navigating the complexities of the Ethereum ecosystem.

Literature Review

The Ethereum blockchain relies on a gas mechanism to execute transactions
and smart contracts. Gas fees, determined by the gas price and gas limit,
ensure efficient resource allocation and protect against spam. EIP-1559
introduced a base fee model with dynamic adjustments to improve fee
predictability and reduce volatility. Studies such as Reijsbergen et al. [8] found
that while EIP-1559 improves average user experience, short-term demand
spikes still cause variability. Koutmos [9] highlighted that network activity,
particularly transaction volume, is a primary determinant of gas price changes .
User behavior in transaction prioritization reflects strategic considerations, such
as urgency and cost-efficiency. High-value transactions often involve elevated
gas fees to secure timely execution, particularly during congestion. Werner et
al. [10] proposed a deep-learning model for gas price recommendations,
reducing costs by over 50% while maintaining minimal delays. Butler and Crane
[11] extended this work by integrating machine learning models such as LSTM
and CNN for more accurate gas price forecasting, enabling users to optimize
their costs during network activity peaks.

Ferenczi and Badica [12] applied the DeepAR probabilistic forecasting model,
demonstrating its superior accuracy for predicting gas price trends by
integrating blockchain data with time-series forecasting methods. These
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advancements underscore the potential of predictive technologies in mitigating
transaction delays and fee overpayments. The computational requirements of
Ethereum transactions vary significantly by function type, influencing gas
consumption. Wang et al. [13] analyzed gas price prediction using LSTM and
GRU models, demonstrating their effectiveness in forecasting gas fees for
complex operations like token minting compared to simpler functions like
transfers. Afzal Khan et al. [14] performed a regression analysis on Solidity-
based smart contracts, identifying patterns that increase gas costs and
providing insights for developers to create gas-optimized contracts

Economic activity in Ethereum is highly centralized, with transaction volume
dominated by high-value accounts, such as decentralized exchanges and
liquidity pools. Ante and Saggu [15] examined the bidirectional causal
relationships between gas fees and economic activity in DeFi platforms,
revealing that congestion on these platforms significantly affects gas prices and
user activity. Bai et al. [16] studied Ethereum’s transaction patterns from a
temporal graph perspective, observing that a small number of accounts
disproportionately influence network activity and fee structures. High-gas
transactions, often conducted during congestion, provide insights into
prioritization strategies and network stress. Pacheco et al. [17] quantified the
relationship between gas prices and transaction processing times, showing
diminishing returns for very high gas fees. Lan et al. [18] explored the impact
of EIP-1559 on transaction predictability, proposing machine learning models
that incorporate mempool data for improved gas price forecasts.

Scalability challenges have driven interest in Layer-2 solutions like rollups and
sharding. These technologies aim to reduce congestion and gas costs by
offloading transactions from the Ethereum base layer, enhancing overall
network performance. Liu et al. [19] proposed a regression-based gas price
prediction model, highlighting its potential to reduce transaction costs while
maintaining fast confirmations. Despite extensive research, the relationship
between gas prices and transaction values remains underexplored. Existing
studies often focus on isolated factors such as network congestion, transaction
complexity, or economic centralization without examining their combined
effects. This study addresses these gaps by analyzing the interplay between
gas prices and transaction values, incorporating transaction types, high-gas
scenarios, and recipient activity. By bridging these gaps, this research
contributes to a nuanced understanding of Ethereum transaction dynamics and
offers actionable insights for optimizing gas fees in blockchain ecosystems.

Method

This study employs a quantitative research approach to explore the relationship
between gas prices and transaction values on the Ethereum blockchain. The
dataset comprises 1,000 Ethereum transaction records sourced from publicly
accessible APls, such as Etherscan, and includes key variables such as Gas
Price (Gwei), Value Transferred (ETH), Gas Used, Function Called, and
Recipient Address. These attributes were selected to provide a comprehensive
basis for analyzing transaction dynamics and uncovering patterns influencing
gas prices. Figure 1 illustrates the overall research steps, outlining the process
from dataset collection through data preprocessing, analysis techniques, and
visualization to achieve comprehensive insights.
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Figure 1 Research Step

The dataset underwent preprocessing to ensure reliability and consistency.
Missing or inconsistent data entries were excluded, and all gas prices and
transaction values were converted into consistent units: gas prices in Gwei and
transaction values in ETH. To manage data variability, transactions were
segmented into categories based on their function types (e.g., mint, approve,
transfer) and grouped into value ranges for comparative analysis. Outliers were
addressed using the Interquartile Range (IQR) method, calculated as [20]:

IQR = Q3 — Q1, (1)

Q1 represents the 25th percentile and @3 the 75th percentile. Transactions
outside the range:

[01— 1.5 % IQR, Q3 + 1.5 X IQR], 2)

Were flagged as outlined and addressed to ensure robust statistical outcomes.

The analysis incorporated multiple statistical and computational techniques to
identify trends and relationships within the data. Descriptive statistics, such as
the mean (u) , standard deviation (o)

and median were calculated using the following formulas [21], [22]:

u= Z‘:(l" (3)

X; represents individual data points and n is the total number of observations.

e D (4)

n

a2 providing insight info data dispersion.

o= . ©)
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To quantify the relationship between gas prices and transaction values, the
Pearson Correlation Coefficient (r) was calculated using [23]:

L IR
VI —X)2(Y, - 7)?

(6)

X; and Y; represent gas price and transaction value, respectively, and X and Y
are their means. A value of r close to zero indicates a weak relationship, while
values near -1 or +1 suggest strong negative or positive correlations.

Transactions were segmented by function type to analyze variations in gas price
and value. Box plots were used to illustrate differences in gas price distributions
across function categories. High-gas transactions were analyzed separately,
defined as transactions exceeding the 90th percentile of gas prices (Py),
calculated as:

(Pgy) = Gas Price Percentile (90th) (7)

For high-gas transactions, descriptive statistics were recalculated to identify
behavioral patterns during network congestion.

Transactions were grouped by recipient address to identify patterns of value
concentration. The total transaction value received by each address (V;p¢q;) Was

computed as:
n
Viotal = Z Vi, (8)
i=1

V; represents the value of each transaction directed to a recipient, and n is the
number of transactions for that address. The mean transaction value V,,.,,, was
calculated using:

%
_ total. (9)

Vmean - n

This analysis provided insights into the economic centralization of transaction
activity and its impact on gas price trends.

Visualization tools were employed to enhance data interpretation. Scatter plots
depicted the relationship between gas prices and transaction values, while box
plots highlighted variations across transaction functions. Bar charts visualized
the distribution of transaction values among recipient addresses, and
histograms illustrated the frequency of gas prices and transaction values. The
algorithm 1 outlines the step-by-step quantitative procedure used to analyze the
relationship between gas prices and transaction values on the Ethereum
blockchain, incorporating data preprocessing, statistical computation,
correlation analysis, and visualization to identify underlying transaction patterns.

Algorithm 1 Ethereum Gas—-Value Correlation Analysis
Input:

D ={Ty,T,, ..., T,}, a dataset containing nEthereum transactions.
Each transaction T; = (GP;,V;, GU;, F;, R;), where:
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e  (GP;: Gas Price (in Gwei)

e  V;: Value Transferred (in ETH)
e (GU;: Gas Used

e  F;: Function Called

e R;: Recipient Address

Output:
Descriptive statistics, Pearson correlation coefficient r, and visual analysis results.

1. Data Preprocessing
o Clean dataset: D « Clean(D)
o Convert all units to standard formats: GP; - Gwei,V; - ETH

2. Outlier Detection (Interquartile Range Method)
Compute quartiles and interquartile range:

Q1 = Percentile(GP, 25)
Q3 = Percentile(GP,75)
IQR=Q3— 04

Define bounds for valid data:

Lower Bound = Q; — 1.5 X IQR
Upper Bound = Q3 + 1.5 X IQR

Filter dataset:
D = {T; € D | Lower Bound < GP; < Upper Bound}
3. Descriptive Statistics
Compute measures of central tendency and dispersion:

n
N
Iiap—n‘ i

=1

n

1
atp = EZ(GP" — tgp)®
i=1

0V=,’01§

4. Correlation Analysis (Pearson Correlation Coefficient)

The Pearson correlation coefficient between Gas Price and Value Transferred is calculated
as:

Y (GP = ugp)(V; — )

T =
R T

Interpretation:
o r =~ 0: weak or no correlation
o r - +1: strong positive correlation
o r — —1:strong negative correlation
5. Transaction Function Segmentation
For each unique function F; € {Fy, F,, ..., F }:
o Subset dataset: D; = {T; | F; = F}}
o Generate box plots to visualize gas price distributions for each function
category.
6. High-Gas Transaction Analysis
Determine the 90th percentile of gas prices:
Py, = Percentile(GP,90)
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Select high-gas transactions:
Drpigh ={T; €D | GP; > Pgo}
Compute descriptive statistics for high-gas subset:
[Dhignl

1
P — GP;
Hhrign |Dhigh | ; i
[Dhighl

1
Ohigh = |70 E (GP; — tnign)?
| Dnign | &2

7. Recipient-Based Aggregation
For each unique recipient R; € {Ry, Ry, ..., Rp}:
Compute total and average transaction values:

Veorat(B) = Y Vi

I::R1'=R]'
nRj = COUnt({Ti | Ri = R]})
Viotal (R})
Vmean(Rj) =7
ng

J
8. Visualization
o Scatter plot: Gas Price (x-axis) vs. Transaction Value (y-axis).
o Box plots: Gas Price distributions by function category.
o Bar chart: Recipient Address vs. Total Transaction Value.
o Histograms: Frequency distributions of Gas Price and Transaction Value.
9. Output Results
o Report descriptive statistics: ugp, ogp, v, oy -
o Report correlation coefficient r.
o Interpret observed patterns between Gas Price and Transaction Value.
End Algorithm

Result

The analysis of Ethereum transaction data reveals detailed insights into the
intricate relationship between gas prices and transaction values, emphasizing
the impact of transaction functions, recipient addresses, and high-gas scenarios
on these dynamics. Each transaction function demonstrates distinct gas price
and transaction value characteristics, shaped by the computational complexity
and purpose of the function. For instance, the mint function, which involves
creating new tokens or assets on the blockchain, is particularly resource-
intensive. It recorded the highest average gas price of 120.45 Gwei,
accompanied by a broad standard deviation of 15.30 Gwei, reflecting variability
in the computational effort required for different minting operations. These
findings highlight the function's heavy reliance on network resources,
necessitating higher gas fees. In contrast, the approve function, used to grant
token transfer permissions, exhibited a lower mean gas price of 98.30 Gwei,
indicative of its relatively less intensive computational requirements. However,
this function was associated with a wide range of transaction values, spanning
from 0.10 ETH to 45.30 ETH, showcasing its utility across a variety of use cases,
from minor transactions to substantial fund movements. This diversity
underscores the function's adaptability to varying transaction needs. The
transfer function, typically employed for direct value transfers between
accounts, displayed a mean gas price of 110.80 Gwei, which is higher than that
of approve but lower than mint. Notably, the transfer function had the highest
mean transaction value of 30.50 ETH, suggesting its preference for executing
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significant value exchanges. These findings reflect how users prioritize gas
expenditure based on the criticality and purpose of each transaction.

To further explore the dynamics of gas prices and transaction values,
transactions were grouped into Value Transferred (ETH) ranges (see table 1).
This grouping revealed nuanced trends in gas price variations across different
transaction value categories. As the transaction value increased, the mean gas
price exhibited only slight incremental changes, suggesting that users are
generally consistent in their gas price preferences regardless of transaction
size. However, the highest mean gas price of 120.90 Gwei was recorded in
transactions valued between 40 ETH and 50 ETH, indicating a potential
willingness among users in this range to pay a premium for faster or more
reliable execution. This observation aligns with the behavior of high-value
participants who often prioritize transaction speed and security over cost
savings. The analysis underscores the complexity of Ethereum's transaction
ecosystem, where factors such as transaction purpose, value range, and user
priorities interplay to shape gas price decisions and blockchain activity.

Table 1 Value Range Analysis

Value Range Mean Gas Price Std Dev Min Gas Price Max Gas Price Transaction
(ETH) (Gwei) (Gwei) (Gwei) (Gwei) Count
[0, 10) 102.10 12.45 78.00 115.70 300
[10, 20) 105.80 15.20 80.30 140.00 250
[20, 30) 110.40 18.00 90.00 145.50 200
[30, 40) 115.60 14.10 95.50 150.20 150
[40, 50) 120.90 10.25 102.00 140.80 100

The data indicates that higher-value transactions tend to be associated with
slightly elevated gas prices, reflecting users' increased willingness to pay for
faster and more reliable transaction processing. This behavior is particularly
evident in transactions involving significant financial stakes, where delays or
failures could result in considerable losses. Users in these scenarios, such as
institutional investors or participants in Decentralized Finance (DeFi) protocols,
prioritize transaction speed and certainty over cost savings. This trend highlights
the strategic decision-making of high-value participants who leverage the
Ethereum network for critical financial operations, accepting higher gas costs
as a necessary trade-off for ensuring transaction success.

Further analysis of recipient addresses reveals a marked concentration of
transaction values, with a small number of addresses accounting for the majority
of high-value transactions (table 2). The top three recipient addresses
collectively received the largest total transaction values, with minimal variability
in transaction size. For example, the top address received 49.95 ETH
consistently across all transactions, suggesting that these funds were directed
toward single-purpose operations, such as large-scale smart contract
executions or transfers to centralized accounts like exchanges. This
concentration underscores the role of prominent accounts in facilitating major
blockchain activities, such as liquidity provision, settlement processes, or
staking pools. The predictable and substantial inflows to these addresses
emphasize their specialized and critical function within the Ethereum
ecosystem, further demonstrating the network's reliance on key participants to
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support high-value and complex financial activities.

Table 2 Top Recipient Analysis

To Address Tot(aEIT\ﬁl)lue {\III:I?I: S(tg.r?;v VI\:IISe V“:l?:e

(ETH) (ETH) (ETH)
0x185d18a61e852¢c 49.95 49.95 0.00 49.95 49.95
0xdb9b71b00fa35 49.91 49.91 0.00 49.91 49.91
0x20c33829bae136 49.89 49.89 0.00 49.89 49.89

Transactions with gas prices above the 90th percentile were examined to
uncover patterns in user behavior and transaction characteristics. These high-
gas transactions, which represent a subset of the most expensive transactions
in terms of gas fees, exhibited a mean gas price of 191.96 Gwei with a narrow
standard deviation of 5.43 Gwei. This minimal variability suggests that users in
this category prioritize consistent transaction speed and reliability, willingly
paying a premium to ensure their transactions are processed quickly, especially
during periods of network congestion. Such behavior is typically observed
among users engaging in time-sensitive operations, such as arbitrage trading,
liquidations in Decentralized Finance (DeFi), or executing smart contracts with
strict deadlines.

In contrast, the transaction values for these high-gas transactions exhibited
significant variability (see table 3), with a mean of 23.91 ETH and a standard
deviation of 13.66 ETH. This wide range indicates that while some high-gas
transactions involved moderate values, others included substantial transfers.
The diversity in transaction sizes reflects the multifaceted use cases of the
Ethereum network, from high-stakes financial operations to smaller yet urgent
activities. This combination of high gas prices and varying transaction values
highlights the network's flexibility in accommodating both the needs of users
seeking immediate execution for critical transactions and those willing to pay
more for convenience or strategic advantage.

Table 3 High-Gas Transactions

Metric Gas Price (Gwei) Value Transferred (ETH)
Mean 191.96 2391
Standard Deviation 5.43 13.66
Minimum 182.86 0.087
Maximum 199.94 49.86

The correlation coefficient between Gas Price (Gwei) and Value Transferred
(ETH) is -0.0273, indicating a weak and slightly negative relationship. This
suggests that the gas price users are willing to pay largely depends on the
transaction value being transferred. Instead, gas prices appear to be influenced
more heavily by external factors such as network congestion, user prioritization,
and the urgency of the transaction. For instance, users may pay higher gas
prices during peak periods to expedite transaction processing, regardless of the
monetary value involved. The scatter plot presented earlier reinforces this
conclusion, as the data points are widely dispersed, showing no discernible
pattern or trend linking gas prices to transaction values. These findings suggest
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that transaction behavior in the Ethereum blockchain is shaped more by the
type of function being called and the specific recipient account rather than a
direct correlation between gas prices and transaction values. High-value
transactions do tend to exhibit slightly higher gas prices, but the weak
correlation implies that this relationship is not a dominant factor in gas price
determination. Instead, transaction dynamics are driven by the computational
complexity of the function, the priority users place on transaction speed, and the
broader network conditions at the time of execution. Understanding these
influences provides critical insights into Ethereum transaction patterns,
highlighting opportunities for users and developers to optimize network
interactions, such as through improved gas management strategies or the
adoption of scaling solutions to reduce congestion.

Discussion

The analysis of Ethereum transaction data provides a deeper understanding of
the factors influencing gas prices and transaction values, as well as the broader
transaction dynamics on the Ethereum blockchain. While gas prices are a
critical component of transaction execution, the findings indicate that they are
not strongly correlated with the monetary value being transferred. The weak
correlation coefficient of -0.0273 suggests that users prioritize other factors,
such as transaction speed, network congestion, and the purpose of the
transaction, rather than basing gas prices on the value of their transactions. This
highlights the complexity of user behavior in optimizing for cost-effectiveness
and urgency. One of the key insights from this study is the role of transaction
functions in shaping gas prices. Functions such as mint, which are
computationally intensive, command higher average gas prices, reflecting their
demand for network resources. Conversely, simpler functions like approve and
transfer have lower mean gas prices but are used across a broader range of
transaction values, indicating their utility in diverse scenarios. This variability
emphasizes how the purpose and computational complexity of a transaction
influence gas prices more significantly than transaction value alone.

Another important observation is the concentration of transaction values among
specific recipient addresses. The top recipient addresses received the highest
transaction values with minimal variability, suggesting their association with
predefined or automated processes, such as decentralized exchanges, liquidity
pools, or high-value smart contract operations. This concentration underscores
the economic centralization within the Ethereum ecosystem, where a small
number of accounts handle a disproportionate share of high-value activities.
Such centralization has implications for network efficiency, security, and
scalability. The analysis of high-gas transactions further highlights user
prioritization during periods of network congestion or urgency. Transactions in
the top 10% of gas prices displayed a high mean gas price of 191.96 Gwei with
minimal variability, indicating a willingness to pay a premium for faster
execution. Interestingly, these transactions exhibited significant variability in
their corresponding values, with a mean of 23.91 ETH and a wide standard
deviation of 13.66 ETH. This suggests that while some high-gas transactions
involved substantial financial transfers, others were likely motivated by time-
sensitive operations, such as liquidations or arbitrage opportunities, rather than
transaction value alone. These findings collectively highlight the complexity of
transaction behavior on the Ethereum blockchain. Factors such as

Isman and Sangsawang (2025) J. Curr. Res. Blockchain. 253



Journal of Current Research in Blockchain

computational requirements, user prioritization, network congestion, and the
role of high-value accounts interplay to shape transaction dynamics. This
understanding has practical implications for both users and developers. Users
can optimize transaction costs by leveraging off-peak periods or gas
management tools, while developers may focus on scaling solutions, such as
Layer-2 networks, to mitigate congestion and improve cost efficiency. Future
research could further explore time-based patterns, the impact of Ethereum
network upgrades (e.g., EIP-1559), and the adoption of alternative scaling
technologies to address ongoing challenges.

Conclusion

This study analyzed the relationship between gas prices and transaction values
on the Ethereum blockchain, offering valuable insights into transaction
dynamics and the factors influencing gas price determination. The findings
reveal that gas prices and transaction values are largely independent, as
indicated by a weak correlation coefficient of -0.0273. Instead, transaction
dynamics are shaped by the computational complexity of functions, user
prioritization, and external network conditions such as congestion. Functions
with higher computational demands, such as mint, were associated with higher
average gas prices, reflecting their resource-intensive nature. Conversely,
functions, like approve and transfer, exhibited broader utility across various
transaction values, emphasizing the diversity of use cases. The analysis of
recipient addresses further highlights the concentration of transaction values
within a small number of accounts, indicating economic centralization and the
pivotal role of high-value participants in the ecosystem. Additionally, the
analysis of high-gas transactions demonstrates that users are willing to pay
significant premiums for expedited processing, particularly for time-sensitive or
critical operations, regardless of transaction value.

These findings underscore the complexity and multifaceted nature of Ethereum
transaction behavior. While gas prices are a critical aspect of transaction
execution, their determination is influenced by a range of factors beyond
transaction value, including computational intensity, network congestion, and
transaction urgency. This has practical implications for optimizing gas usage
and designing strategies to mitigate network inefficiencies. Future research
should explore temporal patterns in transaction behavior, the impact of network
upgrades such as EIP-1559, and the role of emerging Layer-2 scaling solutions
in alleviating congestion and reducing gas costs. Investigating user behavior in
these upgraded environments can provide additional insights into network
sustainability and efficiency as Ethereum continues to evolve. A deeper
understanding of these factors will further enhance the network’s ability to
accommodate growing transaction volumes while maintaining accessibility and
affordability for its users.
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