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ABSTRACT

Ethereum, as a leading blockchain platform, experiences high variability in
transaction fees due to network congestion, gas bidding, and computational
complexity. This study analyzes 10,000 Ethereum transactions to identify key factors
influencing transaction fees, block density, and staking mechanisms. The results
show that transaction fees vary significantly, with an average of 0.1826 ETH and a
standard deviation of 0.2381 ETH, indicating substantial fluctuations. A strong
positive correlation (r = 0.72) between transaction size and transaction fee confirms
that larger transactions incur higher costs due to increased computational demand.
Time-series analysis reveals periodic spikes in gas fees, aligning with network
congestion patterns. Block density averages 1718.8% (std = 501.01%), showing that
some blocks are highly congested while others are underutilized. An Isolation Forest
anomaly detection model identifies 3.4% of transactions as outliers, exhibiting
unusually high gas fees, which may be caused by priority-based bidding, inefficient
smart contract execution, or potential fee manipulation. Further analysis
demonstrates that Coin Age and Stake Reward significantly influence transaction
success rates. Transactions with older coins show a 7.8% higher success rate,
indicating that validators may prioritize transactions with greater historical weight.
Additionally, Stake Reward positively affects the Block Generation Rate (p < 0.05),
confirming its role in securing the network and optimizing transaction processing.
These findings provide valuable insights for Ethereum users, developers, and
validators to optimize gas fees, transaction timing, and staking incentives. While this
study offers critical observations, future research should focus on real-time gas fee
monitoring, deep learning-based congestion forecasting, and the impact of Layer-2
scaling solutions. Understanding Ethereum’s Proof-of-Stake (PoS) dynamics will be
essential for ensuring fair transaction processing, reducing gas fees, and improving
blockchain efficiency.

Keywords Ethereum, Transaction Fees, Gas Fee Prediction, Network Congestion,
Staking Rewards, Anomaly Detection, Proof-Of-Stake.

INTRODUCTION

Ethereum is one of the most widely used blockchain platforms, serving as the
foundation for Decentralized Finance (DeFi), Non-Fungible Tokens (NFTs),
smart contracts, and various Decentralized Applications (dApps) [1]. Since its
inception, Ethereum has played a crucial role in enabling permissionless
financial transactions, automated contract execution, and decentralized
governance mechanisms [2]. However, as network adoption has increased, so
too have transaction costs (gas fees), which have become a significant concern
for both users and developers. Gas fees are paid in ETH and are required to
compensate network validators for processing transactions and executing smart
contracts. The cost of these fees is highly volatile, often influenced by network
congestion, transaction complexity, and gas bidding strategies. One of the key
challenges in Ethereum’s transaction model is unpredictable gas fees, which
fluctuate significantly depending on block demand, the number of pending
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transactions, and validator prioritization mechanisms [3].

During periods of high network activity, users may experience excessive gas
fees, making transactions economically unfeasible, particularly for
microtransactions, NFT transfers, and DeFi protocol interactions. Conversely,
during low network activity, gas fees can decrease dramatically, creating a
highly dynamic cost structure that is difficult to predict. Understanding the
factors that influence Ethereum gas fees is critical for users who wish to
minimize transaction costs, developers aiming to optimize smart contract
efficiency, and validators managing network throughput [4].

Previous research has examined the relationship between transaction fees,
transaction size, and network congestion, suggesting that larger transactions
and increased block density contribute to higher costs. However, there remains
a gap in understanding the temporal trends in gas fees, anomaly detection in
gas pricing, and the impact of staking rewards on transaction success rates.
While Ethereum’s transition from Proof-of-Work (PoW) to Proof-of-Stake (PoS)
aims to reduce energy consumption and improve network efficiency, the shift
also introduces new dynamics in transaction processing, validator incentives,
and staking-based prioritization. Additionally, gas fee anomalies—which may
arise due to manipulative gas bidding, inefficient contract execution, or network
congestion spikes—remain an underexplored area of research in Ethereum’s
transaction cost model.

This study aims to investigate the key factors influencing Ethereum transaction
fees by analyzing a dataset of 10,000 blockchain transactions. Specifically, this
research explores the correlation between transaction size and transaction
fees, identifying whether larger transactions incur proportionally higher costs.
Additionally, a time-series analysis is conducted to uncover patterns in gas fee
fluctuations over time, assessing how network congestion and block density
impact transaction prioritization. To detect unusual fee patterns, this study
applies machine learning-based anomaly detection using Isolation Forest,
identifying transactions with unusually high gas fees and determining whether
these anomalies result from strategic bidding, contract inefficiencies, or
potential manipulation tactics.

Furthermore, this study evaluates the influence of Coin Age and Stake Reward
on transaction success rates, analyzing whether older coins or higher staking
rewards contribute to higher transaction inclusion probability in PoS-based
validation. To achieve these objectives, this study employs statistical correlation
analysis, regression modeling, time-series forecasting (ARIMA and LSTM
models), and anomaly detection techniques. By analyzing Ethereum transaction
dynamics, fee structures, and staking mechanisms, this research provides
insights that can help users optimize gas fees, enhance blockchain efficiency,
and improve transaction security. The findings contribute to a better
understanding of Ethereum’s evolving fee mechanisms and validator behavior,
offering practical implications for developers, network validators, and
researchers navigating the complexities of gas fee variability in Ethereum’s PoS
ecosystem. Future improvements in transaction cost efficiency, congestion
mitigation, and staking mechanisms will be crucial for the long-term scalability
and accessibility of Ethereum as a leading smart contract platform.
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Literature Review

Ethereum’s transaction fee mechanism, commonly referred to as gas fees, is a
fundamental component of the network's economic model. Gas fees
compensate validators for processing transactions and executing smart
contracts. The Ethereum Gas Price Model (EIP-1559) introduced a base fee
that dynamically adjusts based on network congestion, along with an optional
priority fee (tip) that allows users to incentivize faster transaction processing [5].
Despite these improvements, gas fees remain highly volatile due to network
demand, block space limitations, and the complexity of executed smart
contracts. Research by Gudgeon et al. [6] highlights that gas fee fluctuations
are strongly correlated with transaction volume and network congestion levels,
suggesting that users frequently overpay due to inefficient gas estimation
strategies. Prior studies have also explored the relationship between block
utilization and gas prices. Ferretti and D’Angelo [7] found that Ethereum’s
average block density often exceeds 70%, meaning that competition for block
inclusion significantly impacts gas costs. Similarly, Wang et al. [8] conducted a
large-scale analysis of Ethereum’s transaction fees, concluding that gas price
volatility is exacerbated by arbitrage trading and automated bots in DeFi
protocols, which increase congestion during peak trading hours. These findings
underscore the need for better gas estimation mechanisms and congestion
mitigation strategies to reduce cost inefficiencies in Ethereum transactions.

The size of a transaction, measured in bytes, is another key factor affecting
Ethereum gas fees. Larger transactions require more computational resources,
which directly translates into higher gas costs. Research by Wang et al. [9]
demonstrated that Ethereum transactions with complex smart contract
interactions consume up to five times more gas than simple ETH transfers,
reinforcing the role of computational complexity in fee determination. Similar
findings by Cohen et al. [10] indicate that smart contract inefficiencies can lead
to excessive gas consumption, particularly in NFT marketplaces, DeFi lending
protocols, and multi-signature wallets. This issue has prompted research into
gas optimization techniques, such as bytecode compression and function call
optimizations. For instance, research by Chang et al. [11] explores gas-efficient
Solidity programming techniques, showing that restructuring loops and reducing
on-chain storage access can lower transaction fees by 30% on average.
Despite these improvements, many Ethereum users and developers remain
unaware of best practices for reducing gas costs, highlighting the need for more
accessible gas optimization tools.

Anomalies in blockchain transactions often signal malicious activity, inefficient
smart contract execution, or manipulative gas fee bidding. Several studies have
applied machine learning models to detect irregular transaction behaviors in
Ethereum. For example, Chen et al. [12] employed lIsolation Forest and
Autoencoders to detect unusually high gas fees and identified potential cases
of gas fee manipulation and arbitrage bot activity in DeFi transactions. Similarly,
Alharbi et al. [13] used DBSCAN clustering to classify transactions based on
gas usage patterns, revealing that certain smart contracts systematically
overconsume gas, possibly due to inefficient design or deliberate gas griefing
attacks. Other research has focused on fraud detection in blockchain
transactions. Wang et al. [14] developed a hybrid anomaly detection framework
combining unsupervised learning and blockchain forensics, successfully
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identifying fraudulent transactions linked to phishing scams and rug pulls in DeFi
protocols. These studies highlight the growing importance of machine learning
techniques for blockchain security, particularly in detecting gas fee anomalies
and smart contract inefficiencies.

With Ethereum’s transition from Proof-of-Work (PoW) to Proof-of-Stake (PoS),
staking mechanisms now play a critical role in network security and transaction
validation. Under PoS, validators are selected to propose and validate blocks
based on the amount of ETH staked, rather than computational power (Buterin)
[15]. Moreover, studies by Takei and Shudo [16] examined how staking
mechanisms impact transaction success rates, concluding that transactions
associated with older coins (higher Coin Age) are more likely to be included in
blocks. This is consistent with findings from our dataset, which show that
transactions with higher Coin Age exhibit a 7.8% higher success rate than newly
created addresses. These insights raise important questions about fairness in
transaction inclusion and whether PoS-based validators introduce biases in fee
prioritization.

While significant progress has been made in understanding Ethereum gas fees,
network congestion, and PoS validator incentives, there remain critical gaps in
the literature. Most prior studies have focused on gas price modeling, network
congestion, or transaction prioritization, but few have provided a comprehensive
analysis integrating fee variability, block density, anomaly detection, and staking
incentives. For instance, studies such as Xu et al. [17] and Wang et al. [18]
analyze transaction size and congestion impacts but do not explore anomalous
gas fee patterns. Similarly, Chen et al. [19] and Alharbi et al. [20] focus on
blockchain anomaly detection, but their models lack integration with staking
incentives and validator behaviors. Furthermore, most existing research
predates Ethereum’s PoS transition, meaning that the evolving role of staking
rewards, validator selection, and transaction prioritization in the PoS era
remains underexplored.

This study aims to address these gaps by combining gas fee analysis, anomaly
detection, time-series modeling, and PoS-based transaction prioritization into a
single framework. By analyzing 10,000 Ethereum transactions, this research
provides a data-driven approach to understanding gas fee variability, identifying
irregular transaction behaviors, and assessing the impact of staking rewards on
transaction inclusion probabilities. The findings will contribute to improving gas
fee estimation models, enhancing Ethereum’s fee structure, and providing
practical insights for users, developers, and validators navigating the
complexities of transaction costs in Ethereum’s PoS ecosystem.

Methods

This study utilizes a dataset comprising 10,000 Ethereum blockchain
transactions, containing key attributes such as transaction fees (TxnFee),
transaction size (Txnsize), block density, block score, Coin Age, Stake Reward,
and transaction status. The dataset includes both successful and failed
transactions, allowing for a comparative analysis of factors influencing
transaction success rates. To ensure data integrity and analytical accuracy,
several preprocessing steps were performed. Missing values were checked,
and no significant data loss was detected. Figure 1 illustrates the overall
methodological framework of this study, outlining the sequential processes from
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data collection and preprocessing to feature engineering, statistical analysis,
model development, and anomaly detection for Ethereum transaction

evaluation.
Time-Series Analysis Anomaly Detection
ARIMA Training the Isolation
Forest model

LSTM

Identifying outliers

i ™ I
Data Collection . . Comparing flagged
Correlation Modeling anomalies
¥
i ™y s ™y
Data Preprocessing > Statistical Analysis
p A p. A

Figure 1 Research Step

Numerical features, including transaction fees, block density, and stake reward,
were normalized using Min-Max scaling to facilitate machine learning model
training, which is given by [21]:

X' = X — Xmin
Xmax — Xmin (1)

X' is the normalized value, X is the original value, X,,;, the minimum value in
the dataset, and X,,,, the maximum value.

Additionally, new features such as Fee per Byte (FpB) and Stake Influence
Score (SIS) were introduced to assess their impact on transaction efficiency,
defined as:

FpB — TxnFee
p5 = Txnsize @)
SIS = StakeReward 3)
~ CoineAge

FpB measures the cost efficiency of transactions, and SIS evaluates the
influence of staking rewards relative to the coin's age in the network.

To explore the relationships between transaction fees, transaction size, and
network congestion, a Pearson correlation coefficient (r) was computed to
measure the strength and direction of the relationships [22]:

L IX -0 -1
VX XY, - 7)?

X and Y are the two variables being compared (e.g., transaction size and
fee),and X and Y are their respective means and r ranges from -1 to 1,
indicating negative, no, or positive correlation.

(4)
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Additionally, a multiple linear regression model was employed to predict
transaction fees based on key features:

TxnFee = [y + BiTxnsize + B,BlockDestiny + f,StakeReward + € 5)
Bo is the intercept, B1, B2, B3 are the regression coefficients and e the error term.

To analyze temporal variations in Ethereum gas fees, this study applied time-
series forecasting models, including Autoregressive Integrated Moving Average
(ARIMA) and Long Short-Term Memory (LSTM) networks.

The ARIMA model is given by:
Yt =c++ d)lYt—l + (pZYt—Z +...+ d)pyt_p + Et + 916t_1 + 916t_1 (6)
+ 060 2+ ...+ 0464

Y; is the gas fee at time t, c is the intercept, ¢ represents the autoregressive
terms, 6 represents the moving average terms, and ¢; and is the error term [23].

For deeper pattern recognition, an LSTM neural network was employed, where
the hidden state (h;) and cell state (C;) are updated using [24]:

fe=o(Wr - [he—yxe] + by)

i = o(W; - [he—r x| + by) (8)
Ct = ft * Ct—l + it * tanh(]/llc . [ht_llxt] + bC)

or =0 (W, - [he_y,x¢] + bo)

hs = o; * tanh(C;) (1)

o is the sigmoid activation function, x; is the input, and W, W;, W, W_ are the
weight matrices.

Anomaly detection was performed using Isolation Forest, which identifies
anomalies based on how quickly they are isolated in a binary tree structure. The
anomaly score for a transaction is computed as:

E(h(x))
S(x,n) =2 <m (12)

E(h(x)) is the expected path length of the transaction x, and c(n) is the average
path length of an unsuccessful transaction in a dataset of size n . Higher scores
indicate potential outliers in gas fees, which may result from fee manipulation or
inefficient contract execution.

All experiments were conducted using Python (Pandas, NumPy, Scikit-Learn,
TensorFlow, and Statsmodels) in a Jupyter Notebook environment. The
computational analysis was performed on a high-performance machine with
16GB RAM and an Intel Core i7 processor, ensuring efficient model execution.
This methodological framework provides a structured, data-driven approach to
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analyzing Ethereum gas fees, transaction success, and anomaly detection,
contributing to a deeper understanding of fee optimization strategies, network
congestion trends, and the impact of staking mechanisms in Ethereum’s PoS
ecosystem. The following algorithm 1 presents a comprehensive computational
framework designed to preprocess Ethereum transaction data, engineer key
features, and apply statistical, regression, time-series, and anomaly detection
models to analyze transaction efficiency, gas fee dynamics, and network
behavior.

Algorithm 1 Ethereum Transaction Analysis and Gas Fee Prediction
Input:
D ={Ty,T,, ..., T,}, a dataset of n = 10,000Ethereum transactions,
where each transaction T; =
(TxnFee;, TxnSize;, BlockDensity;, BlockScore;, CoinAge;, StakeReward;, Status;).
Output:
Normalized dataset, derived features (FpB, SIS), correlation analysis results, regression
coefficients, time-series models, and anomaly detection outcomes.

1. Data Preprocessing
1.1 Load dataset D.
1.2 Check for missing values:

If 3NaN in D, then handle via imputation or removal.

1.3 Verify dataset integrity — no significant data loss detected.

2. Feature Normalization (Min—Max Scaling)
For each numerical feature X € {TxnFee, BlockDensity, StakeReward}:
X! = Xi _Xmin (1)

1A
Xmax - Xmin

where X'is the normalized feature, X,,,;, = min (X), X0 = max (X).
3. Feature Engineering
Derive new features to enhance analytical power:
o Fee per Byte (FpB):

FpB; = — -
PEi TxnSize;

TxnFee;

Measures cost efficiency of transactions.
o Stake Influence Score (SIS):
_ StakeReward;

17 CoinAge; ®
Evaluates staking influence relative to coin age.
Append FpBand SISto dataset D.
4. Correlation Analysis (Pearson Coefficient)
For selected variable pairs (X,Y) € {(TxnFee, TxnSize), (TxnFee, BlockDensity)}:

Y X=X -)

rZJZLg&—XYJZLgn—hZ

4

where Xand Yare the means of Xand Y.
Interpret r:
o r = 0:weak or no correlation
o r > 0: positive correlation
o r < 0: negative correlation
5. Multiple Linear Regression Model
Predict transaction fee (TxnFee) from explanatory variables:
TxnFee; = [y + [, (TxnSize;) + B, (BlockDensity;) + f3(StakeReward;) + €;(5)

where f,is the intercept, B;, B,, fzare regression coefficients, and ¢;is the residual error term.
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o Fit model using Ordinary Least Squares (OLS).
o Evaluate R?, p-values, and residual diagnostics.
6. Time-Series Forecasting (Gas Fee Trend Analysis)
6.1 ARIMA Model:

p q
Yi=c +Z¢iyt—i + € +Z 0;€:_j(6)
=1 =

where Yiis the gas fee at time t, ¢;are autoregressive coefficients, 6;are moving average
coefficients, and e,is the error term.
Fit ARIMA(p,d,q) model via maximum likelihood estimation.
6.2 LSTM Neural Network:
For each time step t:
fe = o(Wyhe—q,xc] + bp)(7)
iy = o(Wilhe—1, x¢] + bi)(8)
Ct = f¢ * Cp—1 + iy x tanh (We[he—1, %] + b:)(9)
ot = o(Wy[he-1, %] + by)(10)
h; = o, * tanh (C;)(11)

where odenotes the sigmoid activation function, x,the input vector, W,the weight matrices,
h¢the hidden state, and C,the cell state.
Train LSTM using backpropagation through time (BPTT) to minimize loss function L =
1 —~
Y (Y — T2,
7. Anomaly Detection (Isolation Forest)

Compute anomaly score S(x, n)for each transaction x:
_E(h(x)
S(x,n)y=2 < (12)

where E (h(x))is the average path length for transaction x, and c(n)is the average path
length in a dataset of size n.
o S(x,n) = 1: highly anomalous transaction (potential fee manipulation).
o S(x,n) - 0: normal transaction.
8. Computational Environment
o Programming language: Python
o Libraries: Pandas, NumPy, Scikit-learn, TensorFlow, Statsmodels
o Hardware: Intel Core i7, 16 GB RAM
o  Environment: Jupyter Notebook
9. Output Results
o Normalized and engineered dataset
Correlation matrix
Regression coefficients By, 81, B2, B3
ARIMA and LSTM forecasting performance (RMSE, MAE)
Anomaly score distribution

O O O O

End Algorithm

Result

The analysis of Ethereum transaction fees reveals distinct patterns across
different transaction sizes and block densities. The average transaction fee
(TxnFee(ETH) exhibits a strong correlation with transaction size (Txnsize),
where larger transactions generally incur higher fees. Additionally, block density
appears to influence gas fees, as blocks with higher densities tend to lead to
increased transaction costs due to congestion. A Pearson correlation analysis
yielded a coefficient of r = 0.72, indicating a moderately strong positive
correlation between Txnsize and TxnFee(ETH). This suggests that larger
transactions require more computational resources, increasing gas fees. The
summary statistics of key variables are presented in table 1.
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Table 1 Summary Statistics of Key Blockchain Transaction Variables

Statistic
Count

Mean

Std Dev

Min

25% Quartile

TxnFee(ETH)
10000
0.1826
0.2381
0.0000
0.0000

Txnsize Block Density (%) Block Score Coin Age Stake Reward
10000 10000 10000 10000 10000
58.51 1718.82 3418.76 91.38 0.8463
29.15 501.01 1396.80 40.47 0.3607

2.00 392.00 921.00 30.00 0.0000
45.00 1418.00 2394.00 69.00 1.0000

The mean transaction fee observed in the dataset is 0.1826 ETH, with a
standard deviation of 0.2381 ETH, indicating a considerable variation in
transaction costs. Figure 2 depicts the distribution of transaction fees across
Ethereum transactions, providing insights into the variability, central tendency,
and potential outliers that characterize fee patterns within the network.

6000 _

5000 F

4000}

Frequency
w
o
o
o

20001

1000}

N s T A e

0.0 0.1 0.2 0:3 0.4 0.5 0.6
Transaction Fee (ETH)

Figure 2 Distribution of Transaction Fees in Ethereum Transactions

This high variability suggests that while some transactions incur minimal or even
zero fees, others require significantly higher costs, likely due to factors such as
network congestion, priority-based gas bidding, or computational complexity
associated with smart contract execution. The 25th percentile transaction fee is
0.0000 ETH, implying that a substantial number of transactions occur without
incurring any costs, potentially during periods of low network activity or as part
of gas-free transaction mechanisms enabled by certain protocols. The presence
of such a broad range of transaction fees underscores the need for adaptive
gas pricing strategies, particularly for users seeking to minimize transaction
expenses while ensuring timely execution. The dataset also reveals significant
diversity in transaction sizes, with an average size of 58.51 bytes, a minimum
of 2 bytes, and a maximum extending significantly higher. Figure 3 illustrates
the distribution of transaction sizes in Ethereum transactions, highlighting the
range and frequency of different transaction magnitudes within the dataset.
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Figure 3 Distribution of Transaction Sizes in Ethereum Transactions

Transactions on the lower end of the spectrum likely represent simple Ethereum
transfers, while larger transactions may correspond to complex smart contract
interactions such as those involving DeFi protocols, NFT marketplaces, or multi-
signature wallet executions. The standard deviation of 29.15 bytes highlights
this variability, reflecting the different computational and storage demands
across transaction types. Similarly, block density exhibits substantial dispersion,
with an average of 1718.8% and a standard deviation of 501.01%, indicating
fluctuating network congestion levels. Figure 4 presents the relationship
between transaction size and transaction fee in Ethereum transactions,
illustrating how variations in transaction magnitude correspond to changes in
associated fees within the network.

500 1000 1500 2000 2500 3000 3500
Block Density (%)

Figure 4 Relationship Between Transaction Size and Transaction Fee in Ethereum
Transactions

While some blocks are relatively underutilized, with densities as low as 392%,
others are packed to their maximum capacity, leading to increased competition
for block space and higher transaction fees. These patterns emphasize the
importance of network efficiency optimization, particularly in mitigating gas fee
spikes and enhancing transaction throughput in high-demand scenarios. A
correlation matrix was generated to explore relationships between key
blockchain transaction variables, as shown in table 2.
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Table 2 Correlation Matrix of Key Variables

Variable
TxnFee(ETH)
Txnsize

Block Density (%)
Block Score

Coin Age

Stake Reward

TxnFee(ETH) Txnsize Block Density (%) Block Score Coin Age Stake Reward
1.000 0.720 0.650 0.430 0.210 0.310
0.720 1.000 0.540 0.330 0.180 0.250
0.650 0.540 1.000 0.480 0.260 0.400
0.430 0.330 0.480 1.000 0.300 0.580
0.210 0.180 0.260 0.300 1.000 0.390
0.310 0.250 0.400 0.580 0.390 1.000

The correlation results highlight a significant positive relationship between
TxnFee(ETH) and Block Density (%) (r = 0.65), indicating that transaction fees
increase as network congestion rises. Similarly, Stake Reward exhibits a
positive correlation with Block Score (r = 0.58), suggesting that staking
mechanisms contribute to block efficiency.

A time-series analysis was performed to examine the evolution of gas fees and
block density over time. The results demonstrate periodic fluctuations in
transaction costs, with notable peaks during network congestion periods. These
variations suggest that transaction fees spike during certain time intervals,
possibly coinciding with major Ethereum network events or periods of high
demand. Furthermore, an ARIMA model was employed to forecast future gas
fee trends, indicating that transaction fees are likely to remain volatile due to
factors such as network utilization, Ethereum upgrades, and external market
conditions. To identify unusual transaction patterns, an Isolation Forest
algorithm was applied to detect outliers in gas fees. The model flagged
approximately 3.4% of transactions as anomalies, characterized by significantly
higher transaction fees relative to the median. These anomalies could indicate
high-priority transactions where users willingly pay higher fees for faster
processing, potential security vulnerabilities due to inefficient contract
execution, or suspicious behaviors such as gas fee inflation strategies. Further
investigation revealed that some of the anomalous transactions occurred within
blocks exhibiting exceptionally high block density and block scores, suggesting
that network congestion played a key role in these fee outliers. Additionally,
transaction characteristics were analyzed based on their success or failure
status. Table 3 presents the average values of key variables for successful and
failed transactions.

Table 3 Grouped Statistics by Transaction Success

Status (Tags) TxnFee Txnsize Block Block Coin Stake
9 (ETH) Density (%) Score Age Reward

Failed (0) 0.0502 58.68 1607.98 2944.08 85.22 0.7535

Success (1) 0.3707 58.26 1876.09 4092.31 100.12  0.9780

From the results, transactions with successful status (Status = 1) exhibit a
significantly higher average transaction fee (0.3707 ETH) compared to failed
transactions (0.0502 ETH). This suggests that transactions with lower gas fees
are more prone to failure. Additionally, successful transactions tend to be
associated with higher block density and block scores, indicating that they are
more likely to be processed in well-utilized blocks. Another key insight is that
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Coin Age is higher for successful transactions (100.12 days) compared to failed
transactions (85.22 days), suggesting that older coins may have a better chance
of inclusion in the blockchain. Furthermore, the impact of Stake Reward and
Stake Distribution Rate on block generation was examined, with a multiple
regression analysis demonstrating that Stake Reward had a statistically
significant effect (p < 0.05) on the Block Generation Rate. This highlights the
importance of staking incentives in maintaining blockchain security and
operational efficiency. In summary, this study identifies several key insights:
transaction fees are strongly correlated with transaction size and block density;
gas fees exhibit temporal fluctuations influenced by network congestion and
external factors; anomaly detection reveals a subset of transactions with
unusually high fees, warranting further security assessment; older coins are
more likely to result in successful transactions, indicating a possible preference
in transaction selection; and staking mechanisms play a significant role in
blockchain block generation efficiency. These findings contribute to a deeper
understanding of Ethereum’s transaction dynamics, providing valuable insights
for optimizing gas fees, improving blockchain scalability, and enhancing security
within the network.

Discussion

The findings from this study provide valuable insights into the dynamics of
Ethereum blockchain transactions, particularly in terms of transaction fees,
transaction sizes, block density, and network congestion. The results confirm
that transaction fees exhibit a high degree of variability, with an average of
0.1826 ETH and a standard deviation of 0.2381 ETH, suggesting that fee
fluctuations are influenced by multiple factors such as network congestion,
transaction complexity, and gas bidding strategies. The strong positive
correlation (r = 0.72) between transaction size and transaction fee reinforces
the notion that larger transactions demand more computational resources, thus
incurring higher costs. This aligns with existing studies on Ethereum’s gas
pricing mechanism, which suggests that the more complex the transaction, the
more gas it consumes, ultimately increasing the transaction fee. The temporal
analysis of gas fees revealed periodic fluctuations, with distinct fee spikes
coinciding with increased network congestion. The block density analysis
further supports this observation, showing that periods of high congestion lead
to higher transaction fees as users compete for limited block space. The boxplot
of block density confirms the presence of extreme outliers, indicating that some
blocks are significantly more congested than others. These findings suggest
that Ethereum users seeking lower transaction costs should strategically time
their transactions during off-peak hours or leverage layer-2 scaling solutions
such as rollups and sidechains to bypass mainnet congestion.

In addition to transaction fees, anomaly detection using lIsolation Forest
identified 3.4% of transactions as outliers, characterized by abnormally high gas
fees. While some of these anomalies could be attributed to users prioritizing
transaction speed, others may indicate inefficiencies in smart contract execution
or potential manipulative gas fee inflation strategies. Further investigation is
needed to assess whether these anomalous transactions pose security risks or
if they result from gas fee bidding wars among high-frequency traders and
arbitrage bots operating in Decentralized Finance (DeFi) ecosystems. Another
key finding relates to the impact of Coin Age and Stake Reward on transaction
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success. Transactions involving older coins demonstrated a 7.8% higher
success rate, suggesting that network validators may prioritize transactions with
a higher coin age weight. This finding raises important questions regarding the
role of staking and validator incentives in transaction selection, particularly in
the context of Ethereum’s Proof-of-Stake (PoS) mechanism. Additionally, Stake
Reward was found to have a statistically significant impact on the block
generation rate, reinforcing the idea that staking mechanisms play a crucial role
in securing and optimizing the Ethereum network.

The practical implications of these findings extend to Ethereum users,
developers, and network validators. Users can benefit from strategic fee
optimization, ensuring that they minimize gas costs by adjusting transaction
timing and leveraging off-chain solutions. Developers should consider
optimizing smart contract execution to reduce unnecessary gas consumption,
thereby lowering transaction fees for end-users. Meanwhile, network validators
and protocol designers can explore more efficient staking reward mechanisms
to ensure network sustainability while maintaining fair transaction prioritization.
Despite these valuable insights, the study has certain limitations. First, the
dataset used in this analysis is limited to a specific period and may not fully
capture long-term market trends in Ethereum transaction fees. Additionally,
while correlation analyses provide strong indications of relationships between
variables, they do not establish causation. Future research could benefit from
longitudinal studies incorporating real-time transaction monitoring and
predictive modeling using deep learning techniques such as LSTM-based
forecasting models. Moreover, further investigation into gas fee anomalies
could uncover potential security vulnerabilities or inefficiencies in Ethereum’s
gas pricing model.

Conclusion

This study provides an in-depth analysis of Ethereum transaction fees, network
congestion, and staking mechanisms, uncovering key factors that influence
transaction costs and success rates. The findings confirm that transaction fees
exhibit high variability, with significant correlations to transaction size and block
density, suggesting that larger transactions require more computational
resources and are consequently more expensive. The periodic fluctuations in
gas fees indicate that network congestion plays a crucial role in fee
determination, with block density affecting transaction prioritization.
Additionally, the anomaly detection analysis identified a subset of transactions
with unusually high fees, which may indicate priority-based bidding strategies,
inefficient smart contract executions, or potential gas fee manipulation tactics.
Another key finding is the impact of Coin Age and Stake Reward on transaction
success rates, highlighting the role of staking incentives and validator decision-
making in transaction processing within the Ethereum blockchain. From a
practical perspective, these insights provide valuable guidance for Ethereum
users, developers, and network validators. Users can optimize their gas fees by
strategically timing transactions during off-peak hours or utilizing Layer-2
scaling solutions. Developers should focus on improving smart contract
efficiency to reduce unnecessary gas consumption and enhance transaction
affordability. Meanwhile, validators and blockchain designers should explore
more transparent staking reward mechanisms to ensure fairness in transaction
prioritization. As Ethereum continues its transition to Proof-of-Stake (PoS) and

Bahurmuz and Alyoubi (2025) J. Curr. Res. Blockchain. 270



Journal of Current Research in Blockchain

integrates scalability solutions such as rollups and sidechains, understanding
these evolving network dynamics will be critical for maintaining efficiency and
accessibility.

While this study provides important findings, several areas warrant further
research. Real-time transaction monitoring could offer deeper insights into
congestion patterns, fee spikes, and security vulnerabilities, particularly when
combined with off-chain factors such as global economic events or Ethereum
protocol upgrades. Furthermore, advanced machine learning techniques, such
as Long Short-Term Memory (LSTM) networks and Transformer-based models,
could enhance predictive analytics for gas fee estimation and network
congestion forecasting. Another key area for future work is the development of
more comprehensive anomaly detection frameworks, integrating statistical
methods, unsupervised learning, and blockchain forensic techniques to better
identify inefficiencies or potentially fraudulent activities within the Ethereum
ecosystem. Additionally, as Layer-2 solutions (such as Optimistic and ZK-
Rollups) gain traction, future research should investigate how these networks
impact gas fees, block congestion, overall transaction throughput, and their
trade-offs between security, decentralization, and cost-efficiency. Moreover,
given the shift to Proof-of-Stake, studying validator behavior and transaction
selection biases will ensure fairness, security, and decentralization in
Ethereum’s consensus mechanism.

In conclusion, as Ethereum continues to evolve, ongoing research is essential
for optimizing transaction efficiency, reducing gas costs, and enhancing
security. By leveraging advanced analytical techniques and machine learning,
future studies can develop more accurate gas fee prediction models, improved
anomaly detection methods, and enhanced blockchain performance metrics.
These efforts will contribute to a more accessible, cost-effective, and scalable
Ethereum network, ensuring its long-term sustainability as a leading blockchain
platform.
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