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ABSTRACT 

Ethereum, as a leading blockchain platform, experiences high variability in 

transaction fees due to network congestion, gas bidding, and computational 

complexity. This study analyzes 10,000 Ethereum transactions to identify key factors 

influencing transaction fees, block density, and staking mechanisms. The results 

show that transaction fees vary significantly, with an average of 0.1826 ETH and a 

standard deviation of 0.2381 ETH, indicating substantial fluctuations. A strong 

positive correlation (r = 0.72) between transaction size and transaction fee confirms 

that larger transactions incur higher costs due to increased computational demand. 

Time-series analysis reveals periodic spikes in gas fees, aligning with network 

congestion patterns. Block density averages 1718.8% (std = 501.01%), showing that 

some blocks are highly congested while others are underutilized. An Isolation Forest 

anomaly detection model identifies 3.4% of transactions as outliers, exhibiting 

unusually high gas fees, which may be caused by priority-based bidding, inefficient 

smart contract execution, or potential fee manipulation. Further analysis 

demonstrates that Coin Age and Stake Reward significantly influence transaction 

success rates. Transactions with older coins show a 7.8% higher success rate, 

indicating that validators may prioritize transactions with greater historical weight. 

Additionally, Stake Reward positively affects the Block Generation Rate (p < 0.05), 

confirming its role in securing the network and optimizing transaction processing. 

These findings provide valuable insights for Ethereum users, developers, and 

validators to optimize gas fees, transaction timing, and staking incentives. While this 

study offers critical observations, future research should focus on real-time gas fee 

monitoring, deep learning-based congestion forecasting, and the impact of Layer-2 

scaling solutions. Understanding Ethereum’s Proof-of-Stake (PoS) dynamics will be 

essential for ensuring fair transaction processing, reducing gas fees, and improving 

blockchain efficiency. 

Keywords Ethereum, Transaction Fees, Gas Fee Prediction, Network Congestion, 

Staking Rewards, Anomaly Detection, Proof-Of-Stake. 

INTRODUCTION 

Ethereum is one of the most widely used blockchain platforms, serving as the 

foundation for Decentralized Finance (DeFi), Non-Fungible Tokens (NFTs), 

smart contracts, and various Decentralized Applications (dApps) [1]. Since its 

inception, Ethereum has played a crucial role in enabling permissionless 

financial transactions, automated contract execution, and decentralized 

governance mechanisms [2]. However, as network adoption has increased, so 

too have transaction costs (gas fees), which have become a significant concern 

for both users and developers. Gas fees are paid in ETH and are required to 

compensate network validators for processing transactions and executing smart 

contracts. The cost of these fees is highly volatile, often influenced by network 

congestion, transaction complexity, and gas bidding strategies. One of the key 

challenges in Ethereum’s transaction model is unpredictable gas fees, which 

fluctuate significantly depending on block demand, the number of pending 
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transactions, and validator prioritization mechanisms [3].  

During periods of high network activity, users may experience excessive gas 

fees, making transactions economically unfeasible, particularly for 

microtransactions, NFT transfers, and DeFi protocol interactions. Conversely, 

during low network activity, gas fees can decrease dramatically, creating a 

highly dynamic cost structure that is difficult to predict. Understanding the 

factors that influence Ethereum gas fees is critical for users who wish to 

minimize transaction costs, developers aiming to optimize smart contract 

efficiency, and validators managing network throughput [4]. 

Previous research has examined the relationship between transaction fees, 

transaction size, and network congestion, suggesting that larger transactions 

and increased block density contribute to higher costs. However, there remains 

a gap in understanding the temporal trends in gas fees, anomaly detection in 

gas pricing, and the impact of staking rewards on transaction success rates. 

While Ethereum’s transition from Proof-of-Work (PoW) to Proof-of-Stake (PoS) 

aims to reduce energy consumption and improve network efficiency, the shift 

also introduces new dynamics in transaction processing, validator incentives, 

and staking-based prioritization. Additionally, gas fee anomalies—which may 

arise due to manipulative gas bidding, inefficient contract execution, or network 

congestion spikes—remain an underexplored area of research in Ethereum’s 

transaction cost model.  

This study aims to investigate the key factors influencing Ethereum transaction 

fees by analyzing a dataset of 10,000 blockchain transactions. Specifically, this 

research explores the correlation between transaction size and transaction 

fees, identifying whether larger transactions incur proportionally higher costs. 

Additionally, a time-series analysis is conducted to uncover patterns in gas fee 

fluctuations over time, assessing how network congestion and block density 

impact transaction prioritization. To detect unusual fee patterns, this study 

applies machine learning-based anomaly detection using Isolation Forest, 

identifying transactions with unusually high gas fees and determining whether 

these anomalies result from strategic bidding, contract inefficiencies, or 

potential manipulation tactics.  

Furthermore, this study evaluates the influence of Coin Age and Stake Reward 

on transaction success rates, analyzing whether older coins or higher staking 

rewards contribute to higher transaction inclusion probability in PoS-based 

validation. To achieve these objectives, this study employs statistical correlation 

analysis, regression modeling, time-series forecasting (ARIMA and LSTM 

models), and anomaly detection techniques. By analyzing Ethereum transaction 

dynamics, fee structures, and staking mechanisms, this research provides 

insights that can help users optimize gas fees, enhance blockchain efficiency, 

and improve transaction security. The findings contribute to a better 

understanding of Ethereum’s evolving fee mechanisms and validator behavior, 

offering practical implications for developers, network validators, and 

researchers navigating the complexities of gas fee variability in Ethereum’s PoS 

ecosystem. Future improvements in transaction cost efficiency, congestion 

mitigation, and staking mechanisms will be crucial for the long-term scalability 

and accessibility of Ethereum as a leading smart contract platform. 
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Literature Review 

Ethereum’s transaction fee mechanism, commonly referred to as gas fees, is a 

fundamental component of the network's economic model. Gas fees 

compensate validators for processing transactions and executing smart 

contracts. The Ethereum Gas Price Model (EIP-1559) introduced a base fee 

that dynamically adjusts based on network congestion, along with an optional 

priority fee (tip) that allows users to incentivize faster transaction processing [5]. 

Despite these improvements, gas fees remain highly volatile due to network 

demand, block space limitations, and the complexity of executed smart 

contracts. Research by Gudgeon et al. [6] highlights that gas fee fluctuations 

are strongly correlated with transaction volume and network congestion levels, 

suggesting that users frequently overpay due to inefficient gas estimation 

strategies. Prior studies have also explored the relationship between block 

utilization and gas prices. Ferretti and D’Angelo [7]  found that Ethereum’s 

average block density often exceeds 70%, meaning that competition for block 

inclusion significantly impacts gas costs. Similarly, Wang et al. [8]  conducted a 

large-scale analysis of Ethereum’s transaction fees, concluding that gas price 

volatility is exacerbated by arbitrage trading and automated bots in DeFi 

protocols, which increase congestion during peak trading hours. These findings 

underscore the need for better gas estimation mechanisms and congestion 

mitigation strategies to reduce cost inefficiencies in Ethereum transactions. 

The size of a transaction, measured in bytes, is another key factor affecting 

Ethereum gas fees. Larger transactions require more computational resources, 

which directly translates into higher gas costs. Research by Wang et al. [9]  

demonstrated that Ethereum transactions with complex smart contract 

interactions consume up to five times more gas than simple ETH transfers, 

reinforcing the role of computational complexity in fee determination. Similar 

findings by Cohen et al. [10]  indicate that smart contract inefficiencies can lead 

to excessive gas consumption, particularly in NFT marketplaces, DeFi lending 

protocols, and multi-signature wallets. This issue has prompted research into 

gas optimization techniques, such as bytecode compression and function call 

optimizations. For instance, research by Chang et al. [11]  explores gas-efficient 

Solidity programming techniques, showing that restructuring loops and reducing 

on-chain storage access can lower transaction fees by 30% on average. 

Despite these improvements, many Ethereum users and developers remain 

unaware of best practices for reducing gas costs, highlighting the need for more 

accessible gas optimization tools. 

Anomalies in blockchain transactions often signal malicious activity, inefficient 

smart contract execution, or manipulative gas fee bidding. Several studies have 

applied machine learning models to detect irregular transaction behaviors in 

Ethereum. For example, Chen et al. [12] employed Isolation Forest and 

Autoencoders to detect unusually high gas fees and identified potential cases 

of gas fee manipulation and arbitrage bot activity in DeFi transactions.  Similarly, 

Alharbi et al.  [13]  used DBSCAN clustering to classify transactions based on 

gas usage patterns, revealing that certain smart contracts systematically 

overconsume gas, possibly due to inefficient design or deliberate gas griefing 

attacks. Other research has focused on fraud detection in blockchain 

transactions. Wang et al. [14]  developed a hybrid anomaly detection framework 

combining unsupervised learning and blockchain forensics, successfully 
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identifying fraudulent transactions linked to phishing scams and rug pulls in DeFi 

protocols. These studies highlight the growing importance of machine learning 

techniques for blockchain security, particularly in detecting gas fee anomalies 

and smart contract inefficiencies. 

With Ethereum’s transition from Proof-of-Work (PoW) to Proof-of-Stake (PoS), 

staking mechanisms now play a critical role in network security and transaction 

validation. Under PoS, validators are selected to propose and validate blocks 

based on the amount of ETH staked, rather than computational power (Buterin) 

[15]. Moreover, studies by Takei and Shudo [16]  examined how staking 

mechanisms impact transaction success rates, concluding that transactions 

associated with older coins (higher Coin Age) are more likely to be included in 

blocks. This is consistent with findings from our dataset, which show that 

transactions with higher Coin Age exhibit a 7.8% higher success rate than newly 

created addresses. These insights raise important questions about fairness in 

transaction inclusion and whether PoS-based validators introduce biases in fee 

prioritization. 

While significant progress has been made in understanding Ethereum gas fees, 

network congestion, and PoS validator incentives, there remain critical gaps in 

the literature. Most prior studies have focused on gas price modeling, network 

congestion, or transaction prioritization, but few have provided a comprehensive 

analysis integrating fee variability, block density, anomaly detection, and staking 

incentives. For instance, studies such as Xu et al. [17]  and Wang et al. [18]  

analyze transaction size and congestion impacts but do not explore anomalous 

gas fee patterns. Similarly, Chen et al. [19]  and Alharbi et al. [20]  focus on 

blockchain anomaly detection, but their models lack integration with staking 

incentives and validator behaviors. Furthermore, most existing research 

predates Ethereum’s PoS transition, meaning that the evolving role of staking 

rewards, validator selection, and transaction prioritization in the PoS era 

remains underexplored. 

This study aims to address these gaps by combining gas fee analysis, anomaly 

detection, time-series modeling, and PoS-based transaction prioritization into a 

single framework. By analyzing 10,000 Ethereum transactions, this research 

provides a data-driven approach to understanding gas fee variability, identifying 

irregular transaction behaviors, and assessing the impact of staking rewards on 

transaction inclusion probabilities. The findings will contribute to improving gas 

fee estimation models, enhancing Ethereum’s fee structure, and providing 

practical insights for users, developers, and validators navigating the 

complexities of transaction costs in Ethereum’s PoS ecosystem. 

Methods 

This study utilizes a dataset comprising 10,000 Ethereum blockchain 

transactions, containing key attributes such as transaction fees (TxnFee), 

transaction size (Txnsize), block density, block score, Coin Age, Stake Reward, 

and transaction status. The dataset includes both successful and failed 

transactions, allowing for a comparative analysis of factors influencing 

transaction success rates. To ensure data integrity and analytical accuracy, 

several preprocessing steps were performed. Missing values were checked, 

and no significant data loss was detected. Figure 1 illustrates the overall 

methodological framework of this study, outlining the sequential processes from 
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data collection and preprocessing to feature engineering, statistical analysis, 

model development, and anomaly detection for Ethereum transaction 

evaluation. 

 

Figure 1 Research Step 

Numerical features, including transaction fees, block density, and stake reward, 

were normalized using Min-Max scaling to facilitate machine learning model 

training, which is given by [21]: 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

 

(1) 

𝑋′ is the normalized value, 𝑋 is the original value, 𝑋𝑚𝑖𝑛 the minimum value in 

the dataset, and 𝑋𝑚𝑎𝑥 the maximum value. 

Additionally, new features such as Fee per Byte (FpB) and Stake Influence 

Score (SIS) were introduced to assess their impact on transaction efficiency, 

defined as: 

𝐹𝑝𝐵 =
𝑇𝓍𝑛𝐹𝑒𝑒

𝑇𝓍𝑛𝑠𝑖𝑧𝑒
 

 

(2) 

𝑆𝐼𝑆 =
𝑆𝑡𝑎𝑘𝑒𝑅𝑒𝑤𝑎𝑟𝑑

𝐶𝑜𝑖𝑛𝑒𝐴𝑔𝑒
 (3) 

 

𝐹𝑝𝐵 measures the cost efficiency of transactions, and 𝑆𝐼𝑆 evaluates the 

influence of staking rewards relative to the coin's age in the network. 

To explore the relationships between transaction fees, transaction size, and 

network congestion, a Pearson correlation coefficient (𝑟) was computed to 

measure the strength and direction of the relationships [22]: 

𝑟 =
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

√∑(𝑋𝑖 − 𝑋̅)2(∑ 𝑌𝑖 − 𝑌̅)2
 (4) 

𝑋 and 𝑌 are the two variables being compared (e.g., transaction size and 

fee), and 𝑋̅ and 𝑌̅ are their respective means and 𝑟 ranges from -1 to 1, 

indicating negative, no, or positive correlation. 
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Additionally, a multiple linear regression model was employed to predict 

transaction fees based on key features: 

𝑇𝓍𝑛𝐹𝑒𝑒 = 𝛽0 + 𝛽1𝑇𝓍𝑛𝑠𝑖𝑧𝑒 + 𝛽2𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑠𝑡𝑖𝑛𝑦 + 𝛽2𝑆𝑡𝑎𝑘𝑒𝑅𝑒𝑤𝑎𝑟𝑑 + 𝜖 

 
(5) 

𝛽0 is the intercept, 𝛽1, 𝛽2, 𝛽3 are the regression coefficients and 𝜖 the error term. 

To analyze temporal variations in Ethereum gas fees, this study applied time-

series forecasting models, including Autoregressive Integrated Moving Average 

(ARIMA) and Long Short-Term Memory (LSTM) networks. 

The ARIMA model is given by: 

𝑌𝑡 = 𝑐 +  𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + . . . + 𝜙𝑝𝑌𝑡−𝑝 +  𝜖𝑡  +  𝜃1𝜖𝑡−1 +  𝜃1𝜖𝑡−1 

+  𝜃2𝜖𝑡−2 + . . . + 𝜃𝑞𝜖𝑡−𝑞  
(6) 

𝑌𝑡 is the gas fee at time 𝑡, 𝑐 is the intercept, 𝜙 represents the autoregressive 

terms, 𝜃 represents the moving average terms, and 𝜖𝑡 and is the error term [23]. 

For deeper pattern recognition, an LSTM neural network was employed, where 

the hidden state (ℎ𝑡) and cell state (𝐶𝑡) are updated using [24]: 

𝑓𝑡 =𝜎(𝑊𝑓 ⋅  [ℎ𝑡−1,𝑥𝑡] +  𝑏𝑓) 

 
(7) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅  [ℎ𝑡−1,𝑥𝑡] +  𝑏𝑖) (8) 

𝐶𝑡 =  𝑓𝑡  ∗  𝐶𝑡−1 +  𝑖𝑡 ∗  tanh(𝑊𝑐 ⋅ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝐶) 

 
(9) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑜) 

 
(10) 

ℎ𝑡 =  𝑜𝑡 ∗ tanh(𝐶𝑡) 

 
(11) 

𝜎 is the sigmoid activation function, 𝑥𝑡 is the input, and 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 , 𝑊𝑐 are the 

weight matrices. 

Anomaly detection was performed using Isolation Forest, which identifies 

anomalies based on how quickly they are isolated in a binary tree structure. The 

anomaly score for a transaction is computed as: 

𝑆(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛)  (12) 

𝐸(ℎ(𝑥)) is the expected path length of the transaction 𝑥, and 𝑐(𝑛) is the average 

path length of an unsuccessful transaction in a dataset of size 𝑛 . Higher scores 

indicate potential outliers in gas fees, which may result from fee manipulation or 

inefficient contract execution. 

All experiments were conducted using Python (Pandas, NumPy, Scikit-Learn, 

TensorFlow, and Statsmodels) in a Jupyter Notebook environment. The 

computational analysis was performed on a high-performance machine with 

16GB RAM and an Intel Core i7 processor, ensuring efficient model execution. 

This methodological framework provides a structured, data-driven approach to 



 Journal of Current Research in Blockchain 

 

Bahurmuz and Alyoubi (2025) J. Curr. Res. Blockchain. 

 

264 

 

 

analyzing Ethereum gas fees, transaction success, and anomaly detection, 

contributing to a deeper understanding of fee optimization strategies, network 

congestion trends, and the impact of staking mechanisms in Ethereum’s PoS 

ecosystem. The following algorithm 1 presents a comprehensive computational 

framework designed to preprocess Ethereum transaction data, engineer key 

features, and apply statistical, regression, time-series, and anomaly detection 

models to analyze transaction efficiency, gas fee dynamics, and network 

behavior. 

Algorithm 1 Ethereum Transaction Analysis and Gas Fee Prediction 

Input: 

𝐷 = {𝑇1, 𝑇2, … , 𝑇𝑛}, a dataset of 𝑛 = 10,000Ethereum transactions, 

where each transaction 𝑇𝑖 =
(𝑇𝑥𝑛𝐹𝑒𝑒𝑖 , 𝑇𝑥𝑛𝑆𝑖𝑧𝑒𝑖 , 𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖 , 𝐵𝑙𝑜𝑐𝑘𝑆𝑐𝑜𝑟𝑒𝑖 , 𝐶𝑜𝑖𝑛𝐴𝑔𝑒𝑖 , 𝑆𝑡𝑎𝑘𝑒𝑅𝑒𝑤𝑎𝑟𝑑𝑖 , 𝑆𝑡𝑎𝑡𝑢𝑠𝑖). 

Output: 

Normalized dataset, derived features (FpB, SIS), correlation analysis results, regression 

coefficients, time-series models, and anomaly detection outcomes. 

1. Data Preprocessing 

1.1 Load dataset 𝐷. 

1.2 Check for missing values: 

If ∃ NaN in 𝐷, then handle via imputation or removal. 

 

1.3 Verify dataset integrity → no significant data loss detected. 

 

2. Feature Normalization (Min–Max Scaling) 

For each numerical feature 𝑋 ∈ {𝑇𝑥𝑛𝐹𝑒𝑒, 𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 𝑆𝑡𝑎𝑘𝑒𝑅𝑒𝑤𝑎𝑟𝑑}: 

𝑋𝑖
′ =

𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
(1) 

 

where 𝑋′is the normalized feature, 𝑋𝑚𝑖𝑛 = min (𝑋), 𝑋𝑚𝑎𝑥 = max (𝑋). 

3. Feature Engineering 

Derive new features to enhance analytical power: 

o Fee per Byte (FpB): 

𝐹𝑝𝐵𝑖 =
𝑇𝑥𝑛𝐹𝑒𝑒𝑖

𝑇𝑥𝑛𝑆𝑖𝑧𝑒𝑖
(2) 

 

Measures cost efficiency of transactions. 

o Stake Influence Score (SIS): 

𝑆𝐼𝑆𝑖 =
𝑆𝑡𝑎𝑘𝑒𝑅𝑒𝑤𝑎𝑟𝑑𝑖

𝐶𝑜𝑖𝑛𝐴𝑔𝑒𝑖
(3) 

 

Evaluates staking influence relative to coin age. 

Append 𝐹𝑝𝐵and 𝑆𝐼𝑆to dataset 𝐷. 

4. Correlation Analysis (Pearson Coefficient) 

For selected variable pairs (𝑋, 𝑌) ∈ {(𝑇𝑥𝑛𝐹𝑒𝑒, 𝑇𝑥𝑛𝑆𝑖𝑧𝑒), (𝑇𝑥𝑛𝐹𝑒𝑒, 𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦)}: 

𝑟 =
∑ (𝑋𝑖 − 𝑋̄)(𝑌𝑖 − 𝑌̄)

𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋̄)2𝑛

𝑖=1
 √∑ (𝑌𝑖 − 𝑌̄)2𝑛

𝑖=1

(4) 

 

where 𝑋̄and 𝑌̄are the means of 𝑋and 𝑌. 

Interpret 𝑟: 

o 𝑟 ≈ 0: weak or no correlation 

o 𝑟 > 0: positive correlation 

o 𝑟 < 0: negative correlation 

5. Multiple Linear Regression Model 

Predict transaction fee (𝑇𝑥𝑛𝐹𝑒𝑒) from explanatory variables: 

𝑇𝑥𝑛𝐹𝑒𝑒𝑖 = 𝛽0 + 𝛽1(𝑇𝑥𝑛𝑆𝑖𝑧𝑒𝑖) + 𝛽2(𝐵𝑙𝑜𝑐𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖) + 𝛽3(𝑆𝑡𝑎𝑘𝑒𝑅𝑒𝑤𝑎𝑟𝑑𝑖) + 𝜖𝑖(5) 
 

where 𝛽0is the intercept, 𝛽1, 𝛽2, 𝛽3are regression coefficients, and 𝜖𝑖 is the residual error term. 
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o Fit model using Ordinary Least Squares (OLS). 

o Evaluate 𝑅2, p-values, and residual diagnostics. 

6. Time-Series Forecasting (Gas Fee Trend Analysis) 

6.1 ARIMA Model: 

𝑌𝑡 = 𝑐 + ∑ 𝜙𝑖𝑌𝑡−𝑖 + 𝜖𝑡

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝜖𝑡−𝑗(6)

𝑞

𝑗=1

 

 

where 𝑌𝑡is the gas fee at time 𝑡, 𝜙𝑖are autoregressive coefficients, 𝜃𝑗are moving average 

coefficients, and 𝜖𝑡is the error term. 

Fit ARIMA(p,d,q) model via maximum likelihood estimation. 

6.2 LSTM Neural Network: 

For each time step 𝑡: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)(7) 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)(8) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)(9) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)(10) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)(11) 
 

where 𝜎denotes the sigmoid activation function, 𝑥𝑡the input vector, 𝑊∗the weight matrices, 

ℎ𝑡the hidden state, and 𝐶𝑡the cell state. 

Train LSTM using backpropagation through time (BPTT) to minimize loss function 𝐿 =
1

𝑛
∑(𝑌𝑡 − 𝑌𝑡̂)2. 

7. Anomaly Detection (Isolation Forest) 

Compute anomaly score 𝑆(𝑥, 𝑛)for each transaction 𝑥: 

𝑆(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛) (12) 

 

where 𝐸(ℎ(𝑥))is the average path length for transaction 𝑥, and 𝑐(𝑛)is the average path 

length in a dataset of size 𝑛. 

o 𝑆(𝑥, 𝑛) → 1: highly anomalous transaction (potential fee manipulation). 

o 𝑆(𝑥, 𝑛) → 0: normal transaction. 

8. Computational Environment 

o Programming language: Python 

o Libraries: Pandas, NumPy, Scikit-learn, TensorFlow, Statsmodels 

o Hardware: Intel Core i7, 16 GB RAM 

o Environment: Jupyter Notebook 

9. Output Results 

o Normalized and engineered dataset 

o Correlation matrix 

o Regression coefficients 𝛽0, 𝛽1 , 𝛽2, 𝛽3 

o ARIMA and LSTM forecasting performance (RMSE, MAE) 

o Anomaly score distribution 

End Algorithm 

Result 

The analysis of Ethereum transaction fees reveals distinct patterns across 

different transaction sizes and block densities. The average transaction fee 

(TxnFee(ETH) exhibits a strong correlation with transaction size (Txnsize), 

where larger transactions generally incur higher fees. Additionally, block density 

appears to influence gas fees, as blocks with higher densities tend to lead to 

increased transaction costs due to congestion. A Pearson correlation analysis 

yielded a coefficient of r = 0.72, indicating a moderately strong positive 

correlation between Txnsize and TxnFee(ETH). This suggests that larger 

transactions require more computational resources, increasing gas fees. The 

summary statistics of key variables are presented in table 1. 
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Table 1 Summary Statistics of Key Blockchain Transaction Variables 

Statistic TxnFee(ETH) Txnsize Block Density (%) Block Score Coin Age Stake Reward 

Count 10000 10000 10000 10000 10000 10000 

Mean 0.1826 58.51 1718.82 3418.76 91.38 0.8463 

Std Dev 0.2381 29.15 501.01 1396.80 40.47 0.3607 

Min 0.0000 2.00 392.00 921.00 30.00 0.0000 

25% Quartile 0.0000 45.00 1418.00 2394.00 69.00 1.0000 

The mean transaction fee observed in the dataset is 0.1826 ETH, with a 

standard deviation of 0.2381 ETH, indicating a considerable variation in 

transaction costs. Figure 2 depicts the distribution of transaction fees across 

Ethereum transactions, providing insights into the variability, central tendency, 

and potential outliers that characterize fee patterns within the network. 

 

Figure 2 Distribution of Transaction Fees in Ethereum Transactions 

This high variability suggests that while some transactions incur minimal or even 

zero fees, others require significantly higher costs, likely due to factors such as 

network congestion, priority-based gas bidding, or computational complexity 

associated with smart contract execution. The 25th percentile transaction fee is 

0.0000 ETH, implying that a substantial number of transactions occur without 

incurring any costs, potentially during periods of low network activity or as part 

of gas-free transaction mechanisms enabled by certain protocols. The presence 

of such a broad range of transaction fees underscores the need for adaptive 

gas pricing strategies, particularly for users seeking to minimize transaction 

expenses while ensuring timely execution. The dataset also reveals significant 

diversity in transaction sizes, with an average size of 58.51 bytes, a minimum 

of 2 bytes, and a maximum extending significantly higher. Figure 3 illustrates 

the distribution of transaction sizes in Ethereum transactions, highlighting the 

range and frequency of different transaction magnitudes within the dataset. 
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Figure 3 Distribution of Transaction Sizes in Ethereum Transactions 

Transactions on the lower end of the spectrum likely represent simple Ethereum 

transfers, while larger transactions may correspond to complex smart contract 

interactions such as those involving DeFi protocols, NFT marketplaces, or multi-

signature wallet executions. The standard deviation of 29.15 bytes highlights 

this variability, reflecting the different computational and storage demands 

across transaction types. Similarly, block density exhibits substantial dispersion, 

with an average of 1718.8% and a standard deviation of 501.01%, indicating 

fluctuating network congestion levels. Figure 4 presents the relationship 

between transaction size and transaction fee in Ethereum transactions, 

illustrating how variations in transaction magnitude correspond to changes in 

associated fees within the network. 

 

Figure 4 Relationship Between Transaction Size and Transaction Fee in Ethereum 

Transactions 

While some blocks are relatively underutilized, with densities as low as 392%, 

others are packed to their maximum capacity, leading to increased competition 

for block space and higher transaction fees. These patterns emphasize the 

importance of network efficiency optimization, particularly in mitigating gas fee 

spikes and enhancing transaction throughput in high-demand scenarios. A 

correlation matrix was generated to explore relationships between key 

blockchain transaction variables, as shown in table 2. 
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Table 2 Correlation Matrix of Key Variables 

Variable TxnFee(ETH) Txnsize Block Density (%) Block Score Coin Age Stake Reward 

TxnFee(ETH) 1.000 0.720 0.650 0.430 0.210 0.310 

Txnsize 0.720 1.000 0.540 0.330 0.180 0.250 

Block Density (%) 0.650 0.540 1.000 0.480 0.260 0.400 

Block Score 0.430 0.330 0.480 1.000 0.300 0.580 

Coin Age 0.210 0.180 0.260 0.300 1.000 0.390 

Stake Reward 0.310 0.250 0.400 0.580 0.390 1.000 

The correlation results highlight a significant positive relationship between 

TxnFee(ETH) and Block Density (%) (r = 0.65), indicating that transaction fees 

increase as network congestion rises. Similarly, Stake Reward exhibits a 

positive correlation with Block Score (r = 0.58), suggesting that staking 

mechanisms contribute to block efficiency. 

A time-series analysis was performed to examine the evolution of gas fees and 

block density over time. The results demonstrate periodic fluctuations in 

transaction costs, with notable peaks during network congestion periods. These 

variations suggest that transaction fees spike during certain time intervals, 

possibly coinciding with major Ethereum network events or periods of high 

demand. Furthermore, an ARIMA model was employed to forecast future gas 

fee trends, indicating that transaction fees are likely to remain volatile due to 

factors such as network utilization, Ethereum upgrades, and external market 

conditions. To identify unusual transaction patterns, an Isolation Forest 

algorithm was applied to detect outliers in gas fees. The model flagged 

approximately 3.4% of transactions as anomalies, characterized by significantly 

higher transaction fees relative to the median. These anomalies could indicate 

high-priority transactions where users willingly pay higher fees for faster 

processing, potential security vulnerabilities due to inefficient contract 

execution, or suspicious behaviors such as gas fee inflation strategies. Further 

investigation revealed that some of the anomalous transactions occurred within 

blocks exhibiting exceptionally high block density and block scores, suggesting 

that network congestion played a key role in these fee outliers. Additionally, 

transaction characteristics were analyzed based on their success or failure 

status. Table 3 presents the average values of key variables for successful and 

failed transactions. 

Table 3 Grouped Statistics by Transaction Success 

Status (Tags) 
TxnFee 

(ETH) 
Txnsize 

Block 

Density (%) 

Block 

Score 

Coin 

Age 

Stake 

Reward 

Failed (0) 0.0502 58.68 1607.98 2944.08 85.22 0.7535 

Success (1) 0.3707 58.26 1876.09 4092.31 100.12 0.9780 

From the results, transactions with successful status (Status = 1) exhibit a 

significantly higher average transaction fee (0.3707 ETH) compared to failed 

transactions (0.0502 ETH). This suggests that transactions with lower gas fees 

are more prone to failure. Additionally, successful transactions tend to be 

associated with higher block density and block scores, indicating that they are 

more likely to be processed in well-utilized blocks. Another key insight is that 
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Coin Age is higher for successful transactions (100.12 days) compared to failed 

transactions (85.22 days), suggesting that older coins may have a better chance 

of inclusion in the blockchain. Furthermore, the impact of Stake Reward and 

Stake Distribution Rate on block generation was examined, with a multiple 

regression analysis demonstrating that Stake Reward had a statistically 

significant effect (p < 0.05) on the Block Generation Rate. This highlights the 

importance of staking incentives in maintaining blockchain security and 

operational efficiency. In summary, this study identifies several key insights: 

transaction fees are strongly correlated with transaction size and block density; 

gas fees exhibit temporal fluctuations influenced by network congestion and 

external factors; anomaly detection reveals a subset of transactions with 

unusually high fees, warranting further security assessment; older coins are 

more likely to result in successful transactions, indicating a possible preference 

in transaction selection; and staking mechanisms play a significant role in 

blockchain block generation efficiency. These findings contribute to a deeper 

understanding of Ethereum’s transaction dynamics, providing valuable insights 

for optimizing gas fees, improving blockchain scalability, and enhancing security 

within the network. 

Discussion 

The findings from this study provide valuable insights into the dynamics of 

Ethereum blockchain transactions, particularly in terms of transaction fees, 

transaction sizes, block density, and network congestion. The results confirm 

that transaction fees exhibit a high degree of variability, with an average of 

0.1826 ETH and a standard deviation of 0.2381 ETH, suggesting that fee 

fluctuations are influenced by multiple factors such as network congestion, 

transaction complexity, and gas bidding strategies. The strong positive 

correlation (r = 0.72) between transaction size and transaction fee reinforces 

the notion that larger transactions demand more computational resources, thus 

incurring higher costs. This aligns with existing studies on Ethereum’s gas 

pricing mechanism, which suggests that the more complex the transaction, the 

more gas it consumes, ultimately increasing the transaction fee. The temporal 

analysis of gas fees revealed periodic fluctuations, with distinct fee spikes 

coinciding with increased network congestion. The block density analysis 

further supports this observation, showing that periods of high congestion lead 

to higher transaction fees as users compete for limited block space. The boxplot 

of block density confirms the presence of extreme outliers, indicating that some 

blocks are significantly more congested than others. These findings suggest 

that Ethereum users seeking lower transaction costs should strategically time 

their transactions during off-peak hours or leverage layer-2 scaling solutions 

such as rollups and sidechains to bypass mainnet congestion. 

In addition to transaction fees, anomaly detection using Isolation Forest 

identified 3.4% of transactions as outliers, characterized by abnormally high gas 

fees. While some of these anomalies could be attributed to users prioritizing 

transaction speed, others may indicate inefficiencies in smart contract execution 

or potential manipulative gas fee inflation strategies. Further investigation is 

needed to assess whether these anomalous transactions pose security risks or 

if they result from gas fee bidding wars among high-frequency traders and 

arbitrage bots operating in Decentralized Finance (DeFi) ecosystems. Another 

key finding relates to the impact of Coin Age and Stake Reward on transaction 
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success. Transactions involving older coins demonstrated a 7.8% higher 

success rate, suggesting that network validators may prioritize transactions with 

a higher coin age weight. This finding raises important questions regarding the 

role of staking and validator incentives in transaction selection, particularly in 

the context of Ethereum’s Proof-of-Stake (PoS) mechanism. Additionally, Stake 

Reward was found to have a statistically significant impact on the block 

generation rate, reinforcing the idea that staking mechanisms play a crucial role 

in securing and optimizing the Ethereum network. 

The practical implications of these findings extend to Ethereum users, 

developers, and network validators. Users can benefit from strategic fee 

optimization, ensuring that they minimize gas costs by adjusting transaction 

timing and leveraging off-chain solutions. Developers should consider 

optimizing smart contract execution to reduce unnecessary gas consumption, 

thereby lowering transaction fees for end-users. Meanwhile, network validators 

and protocol designers can explore more efficient staking reward mechanisms 

to ensure network sustainability while maintaining fair transaction prioritization. 

Despite these valuable insights, the study has certain limitations. First, the 

dataset used in this analysis is limited to a specific period and may not fully 

capture long-term market trends in Ethereum transaction fees. Additionally, 

while correlation analyses provide strong indications of relationships between 

variables, they do not establish causation. Future research could benefit from 

longitudinal studies incorporating real-time transaction monitoring and 

predictive modeling using deep learning techniques such as LSTM-based 

forecasting models. Moreover, further investigation into gas fee anomalies 

could uncover potential security vulnerabilities or inefficiencies in Ethereum’s 

gas pricing model. 

Conclusion  

This study provides an in-depth analysis of Ethereum transaction fees, network 

congestion, and staking mechanisms, uncovering key factors that influence 

transaction costs and success rates. The findings confirm that transaction fees 

exhibit high variability, with significant correlations to transaction size and block 

density, suggesting that larger transactions require more computational 

resources and are consequently more expensive. The periodic fluctuations in 

gas fees indicate that network congestion plays a crucial role in fee 

determination, with block density affecting transaction prioritization. 

Additionally, the anomaly detection analysis identified a subset of transactions 

with unusually high fees, which may indicate priority-based bidding strategies, 

inefficient smart contract executions, or potential gas fee manipulation tactics. 

Another key finding is the impact of Coin Age and Stake Reward on transaction 

success rates, highlighting the role of staking incentives and validator decision-

making in transaction processing within the Ethereum blockchain. From a 

practical perspective, these insights provide valuable guidance for Ethereum 

users, developers, and network validators. Users can optimize their gas fees by 

strategically timing transactions during off-peak hours or utilizing Layer-2 

scaling solutions. Developers should focus on improving smart contract 

efficiency to reduce unnecessary gas consumption and enhance transaction 

affordability. Meanwhile, validators and blockchain designers should explore 

more transparent staking reward mechanisms to ensure fairness in transaction 

prioritization. As Ethereum continues its transition to Proof-of-Stake (PoS) and 
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integrates scalability solutions such as rollups and sidechains, understanding 

these evolving network dynamics will be critical for maintaining efficiency and 

accessibility. 

While this study provides important findings, several areas warrant further 

research. Real-time transaction monitoring could offer deeper insights into 

congestion patterns, fee spikes, and security vulnerabilities, particularly when 

combined with off-chain factors such as global economic events or Ethereum 

protocol upgrades. Furthermore, advanced machine learning techniques, such 

as Long Short-Term Memory (LSTM) networks and Transformer-based models, 

could enhance predictive analytics for gas fee estimation and network 

congestion forecasting. Another key area for future work is the development of 

more comprehensive anomaly detection frameworks, integrating statistical 

methods, unsupervised learning, and blockchain forensic techniques to better 

identify inefficiencies or potentially fraudulent activities within the Ethereum 

ecosystem. Additionally, as Layer-2 solutions (such as Optimistic and ZK-

Rollups) gain traction, future research should investigate how these networks 

impact gas fees, block congestion, overall transaction throughput, and their 

trade-offs between security, decentralization, and cost-efficiency. Moreover, 

given the shift to Proof-of-Stake, studying validator behavior and transaction 

selection biases will ensure fairness, security, and decentralization in 

Ethereum’s consensus mechanism. 

In conclusion, as Ethereum continues to evolve, ongoing research is essential 

for optimizing transaction efficiency, reducing gas costs, and enhancing 

security. By leveraging advanced analytical techniques and machine learning, 

future studies can develop more accurate gas fee prediction models, improved 

anomaly detection methods, and enhanced blockchain performance metrics. 

These efforts will contribute to a more accessible, cost-effective, and scalable 

Ethereum network, ensuring its long-term sustainability as a leading blockchain 

platform. 
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