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ABSTRACT 

This study analyzes the temporal patterns and transaction volume trends in the Ripple 

(XRP) network using time series analysis. The dataset comprises over 1.2 million 

transactions spanning three years, allowing for a comprehensive examination of long-

term trends and seasonal fluctuations. Summary statistics reveal a right-skewed 

distribution of transaction volume, where a majority of transactions involve relatively 

small amounts, while a few high-value transactions contribute disproportionately to 

overall network activity. Time series decomposition identifies a clear upward trend in 

transaction volume, with notable seasonal patterns corresponding to weekly and 

monthly cycles. These periodic trends suggest institutional trading behaviors, liquidity 

management strategies, and external market influences. Comparative forecasting 

analysis between ARIMA and LSTM models demonstrates that LSTM achieves 

superior predictive accuracy, with a 30% lower Mean Absolute Error (MAE) and a 

25% reduction in Root Mean Squared Error (RMSE) compared to ARIMA. These 

results highlight the effectiveness of deep learning in capturing non-linear transaction 

dynamics within the blockchain ecosystem. Furthermore, anomaly detection using 

Isolation Forest successfully identifies transactional irregularities, particularly during 

periods of high market volatility and regulatory shifts. Several anomalous transaction 

spikes coincide with major market events, such as sudden exchange inflows and 

network congestion, reinforcing the role of external factors in influencing transaction 

activity. These findings emphasize the need for advanced forecasting techniques and 

real-time anomaly detection systems to improve transaction monitoring and enhance 

security within blockchain networks. Future research could integrate additional on-

chain metrics, off-chain factors, and alternative deep learning models to refine 

predictive capabilities and support more resilient blockchain analytics frameworks. 

Keywords Blockchain, Ripple (XRP), Time Series Analysis, Anomaly Detection, 

ARIMA, LSTM, Transaction Volume Trends 

INTRODUCTION 

Blockchain technology has transformed digital finance by providing a 

decentralized, transparent, and secure framework for processing transactions 

[1]. Among the various blockchain networks, Ripple (XRP) stands out as a 

specialized platform designed for fast and cost-effective cross-border payments 

[2]. Unlike proof-of-work (PoW)-based cryptocurrencies such as Bitcoin and 

Ethereum, Ripple operates on a consensus algorithm, allowing transactions to 

be validated in seconds with minimal energy consumption [3]. Due to its 

increasing adoption by financial institutions, businesses, and payment service 

providers, a comprehensive analysis of transaction volume trends and temporal 

patterns within the Ripple network is essential to understand its growth, 

efficiency, and vulnerabilities [4]. The analysis of blockchain transactions 

provides valuable insights into network behavior, user activity, and security 

risks. Time series analysis has been widely applied to study transaction volume, 
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gas fees, and network congestion in major blockchain platforms such as Bitcoin 

and Ethereum [5]. However, limited research has been conducted on Ripple’s 

unique transaction structure and its temporal evolution. Given that Ripple is 

increasingly being used for institutional settlements, remittances, and liquidity 

provisioning, understanding its long-term trends, periodic fluctuations, and 

anomalous transaction spikes is crucial for ensuring network stability and 

security [6]. One of the key challenges in blockchain transaction analysis is the 

presence of high volatility and irregular transaction patterns, which can be 

influenced by market speculation, regulatory changes, and large institutional 

transfers [7]. Traditional statistical models, such as Autoregressive Integrated 

Moving Average (ARIMA), have been used to forecast financial time series but 

often fail to capture complex, non-linear dependencies present in blockchain 

transactions [8]. In contrast, deep learning models such as Long Short-Term 

Memory (LSTM) networks offer superior performance in modeling long-term 

temporal dependencies and irregular patterns [9]. Additionally, detecting 

anomalies in blockchain transactions is essential for identifying potential 

security threats, fraud, and market manipulations, which requires the application 

of machine learning-based anomaly detection techniques such as Isolation 

Forest. 

This study aims to investigate transaction volume trends and anomalies in the 

Ripple (XRP) network using time series decomposition, predictive modeling, 

and anomaly detection techniques. The specific objectives of this research are 

to analyze the temporal evolution of XRP transactions, including long-term 

trends, seasonal fluctuations, and extreme transaction events, to compare the 

effectiveness of ARIMA and LSTM models in forecasting future transaction 

volumes and identifying key factors influencing transaction behavior, to detect 

anomalous transaction patterns that may indicate market manipulations, 

regulatory impacts, or network stress events using Isolation Forest, and to 

provide insights into how Ripple’s transaction dynamics compare with other 

blockchain networks and how predictive analytics can be used to enhance 

transaction monitoring.  

This study makes several contributions to the field of blockchain analytics and 

predictive modeling. First, by examining over 1.2 million XRP transactions 

spanning three years, this study provides an in-depth analysis of seasonal 

patterns, trend behaviors, and extreme transaction fluctuations in the Ripple 

network. Second, a comparative evaluation of ARIMA and LSTM models 

demonstrates the effectiveness of deep learning in capturing non-linear 

transaction trends, with LSTM reducing Mean Absolute Error (MAE) by 30% and 

Root Mean Squared Error (RMSE) by 25% compared to ARIMA. Third, the 

application of the Isolation Forest successfully detects transaction anomalies, 

revealing correlations with market volatility, regulatory decisions, and exchange 

inflows, which can be crucial for fraud detection and risk assessment. Lastly, 

the findings emphasize the importance of real-time predictive analytics in 

blockchain ecosystems, highlighting potential applications in fraud prevention, 

network efficiency optimization, and market stability assessments.  

Literature Review 

Blockchain transaction analysis has become an essential area of research due 

to its implications in financial stability, fraud detection, and network efficiency. 

Various studies have examined transaction volume trends, forecasting 
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techniques, and anomaly detection methods in blockchain ecosystems. This 

study builds upon previous research by focusing on Ripple (XRP) transaction 

patterns, comparing traditional and deep learning forecasting methods, and 

applying anomaly detection techniques. Several studies have analyzed 

blockchain transaction behavior using historical data to understand network 

efficiency, user activity, and market dynamics. Greaves and Au [10]  conducted 

an early exploration of Bitcoin transactions and found that daily transaction 

counts exhibit periodic spikes influenced by speculative trading and 

macroeconomic factors. Similarly, Li et al. [11]  expanded this analysis to 

Ethereum and identified that transaction volumes correlate with gas fees, 

indicating congestion periods during network demand surges. Unlike proof-of-

work (PoW) blockchains, Ripple (XRP) operates on a consensus-based 

protocol, which offers faster transaction settlement and lower fees.  

However, fewer studies have examined its transaction volume trends. Ferdous 

et al. [12] analyzed XRP transaction volume and liquidity flows, discovering that 

high-value transactions often occur at the end of financial quarters, likely due to 

institutional settlements and liquidity. Wu et al. [13]  further examined XRP 

network activity and identified that transaction clusters exhibit seasonal trends, 

particularly around regulatory announcements and market events. These 

findings suggest that Ripple's transaction behavior may differ from Bitcoin and 

Ethereum, necessitating further research into its temporal patterns and volume 

fluctuations. Predicting transaction volume in blockchain networks is 

challenging due to high volatility, sudden spikes, and external market 

influences. Several studies have compared statistical and machine learning-

based forecasting models to analyze blockchain time series data. Contreras et 

al. [14]  applied ARIMA models to Bitcoin transaction data, finding that short-

term forecasts are accurate but fail to capture sudden market shifts. Similarly, 

Kaufman [15] used SARIMA models for Ethereum gas fee predictions, 

achieving moderate accuracy but struggling with long-term trends. More 

recently, deep learning models have outperformed traditional statistical 

methods in financial time series forecasting. McNally et al. [16]  compared LSTM 

networks and ARIMA models for Bitcoin price prediction, reporting that LSTM 

reduced Mean Absolute Error (MAE) by 25% compared to ARIMA. Zhao et al.  

[17]  extended this approach to Ethereum transaction forecasting and found that 

LSTM improved Root Mean Squared Error (RMSE) by 18%, demonstrating its 

superior ability to model long-term dependencies and non-linear trends.  

Blockchain-specific adaptations of LSTM have also been explored. Xiong et al. 

[18] applied Transformer-based architectures to blockchain transaction 

forecasting, showing that self-attention mechanisms capture transaction 

dependencies more effectively than recurrent networks. This study builds upon 

these findings by comparing ARIMA and LSTM models for Ripple (XRP) 

transaction forecasting, aiming to determine the most effective approach for 

capturing its unique temporal transaction dynamics. Anomaly detection in 

blockchain transactions is critical for fraud prevention, regulatory compliance, 

and network security monitoring. Several studies have applied statistical and 

machine learning techniques to detect suspicious activities in blockchain 

networks. Monamo et al. [19] used k-means clustering to identify abnormal 

Bitcoin transactions and found that fraudulent transactions often coincide with 

exchange manipulations. Chen et al. [20]  applied DBSCAN clustering to detect 

wash trading patterns in Ethereum-based decentralized exchanges, highlighting 
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anomalies in trading volumes. Unsupervised machine learning methods, 

particularly Isolation Forest and Autoencoders, have demonstrated strong 

performance in detecting blockchain transaction anomalies. Li et al. [21] used 

an Isolation Forest to detect irregular transaction spikes in Ethereum and found 

that anomalies often correlate with market crashes and speculative trading 

behavior. Huang et al. [22] applied an autoencoder-based approach to detect 

abnormal trading patterns in decentralized finance (DeFi) applications, 

achieving a high precision rate in identifying fraudulent transactions. Deep 

learning-based anomaly detection has also been explored. Zhang et al. [23] 

proposed an LSTM-based anomaly detection framework for blockchain 

networks, showing that Recurrent Neural Networks (RNNs) can effectively 

identify sudden transaction volume surges linked to bot activities and price 

manipulations. This study extends these methodologies by applying the 

Isolation Forest to detect anomalies in the Ripple (XRP) network, correlating 

irregular transaction patterns with external market events, regulatory changes, 

and liquidity movements. 

Despite extensive research on Bitcoin and Ethereum transaction patterns, 

forecasting, and anomaly detection, studies on Ripple (XRP) transaction 

behavior remain limited. Prior work has focused primarily on Proof-of-Work 

(PoW) blockchains, leaving a gap in the understanding of consensus-based 

networks such as Ripple. A detailed temporal analysis combining forecasting 

and anomaly detection has not been explored extensively in the context of XRP. 

Furthermore, while ARIMA and LSTM models have been compared for 

blockchain price prediction, their effectiveness in XRP transaction volume 

forecasting remains untested. Additionally, anomaly detection techniques such 

as Isolation Forest have seen limited application to Ripple transactions. This 

study addresses the above gaps by conducting a comprehensive temporal 

analysis of XRP transaction volume trends, examining seasonal patterns, trend 

behaviors, and extreme fluctuations over multiple years. It compares ARIMA 

and LSTM models for forecasting Ripple transaction volumes, evaluating their 

effectiveness in capturing short-term and long-term trends. Additionally, it 

applies Isolation Forest for anomaly detection, identifying irregular transaction 

periods and correlating anomalies with market events, liquidity shifts, and 

external regulatory factors. This research contributes to the growing body of 

blockchain studies by bridging gaps in Ripple transaction analytics, offering 

valuable insights for financial analysts, blockchain developers, and regulatory 

bodies. 

Methods 

This study employs a systematic approach to analyzing temporal transaction 

patterns and volume trends in the Ripple (XRP) network using time series 

analysis, forecasting models, and anomaly detection techniques. The 

methodology consists of four main stages: data collection and preprocessing, 

Exploratory Data Analysis (EDA), time series forecasting, and anomaly 

detection. The dataset used in this study consists of Ripple (XRP) transaction 

records, including timestamps, transaction volumes, transaction counts, and 

associated metadata. Figure 1 illustrates the overall research workflow, 

outlining the sequential steps of the study—from data collection and 

preprocessing, exploratory data analysis, and time series forecasting using 

ARIMA and LSTM models, to anomaly detection with Isolation Forest and 
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performance evaluation through statistical metrics. 

 
Figure 1 Research Step 

The data was obtained from public blockchain archives and preprocessed to 

ensure consistency and reliability. Preprocessing steps involved converting 

timestamps to a standardized datetime format, removing duplicate entries and 

missing values, and filtering out incomplete transactions. Additionally, raw 

transaction data was aggregated into daily transaction volumes and counts to 

facilitate time series modeling. To improve model convergence, transaction 

volumes were normalized using min-max normalization, which is defined as 

[24]: 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

𝑋 represents the original transaction volume, while 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 denotes the 

minimum and maximum transaction volumes. 

To gain an initial understanding of transaction behavior in the Ripple network, 

an Exploratory Data Analysis (EDA) was conducted. Descriptive statistics, 

including mean, median, standard deviation, and skewness, were computed to 

examine the distribution of transactions. Trend analysis was performed to 

identify long-term patterns and seasonal fluctuations in transaction volumes. 

Additionally, correlation analysis was employed to investigate relationships 

between transaction volume, transaction count, and external market factors. 

Various visualization techniques, including time series plots, histograms, and 

boxplots, were utilized to detect anomalies, outliers, and periodic trends in 

transaction activity. 

For time series forecasting, this study employed both statistical and deep 

learning-based models, specifically the Autoregressive Integrated Moving 

Average (ARIMA) and Long Short-Term Memory (LSTM) networks. The ARIMA 

model was used as a benchmark for short-term forecasting, and its general form 

is given by [25]: 

𝑌𝑡 = 𝑐 + ∑ ∅𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜃𝑗 ∈𝑡−𝑗+∈𝑡

𝑞

𝑗=1

 

 

(2) 

𝑌𝑡 is the transaction volume at time 𝑡,𝑐 is a constant, ∅𝑖 are the autoregressive 

coefficients, 𝜃𝑗 are the moving average coefficients, and ∈𝑡  represents white 

noise. To determine the appropriate ARIMA parameters (𝑝, 𝑑, 𝑞) the Augmented 

Dickey-Fuller (ADF) test was used to check stationarity, while the 



 Journal of Current Research in Blockchain 

 

Aljohani and Alnahdi (2025) J. Curr. Res. Blockchain. 

 

279 

 

 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

were examined to identify autoregressive and moving average terms. Grid 

search optimization was applied to select the best-performing hyperparameters. 

In addition to ARIMA, an LSTM-based deep learning model was implemented 

to capture long-term dependencies and non-linear transaction patterns. The 

LSTM model processes sequential data using gated memory units, defined as 

follows [26]: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅  [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑓) 

 

(3) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅  [ℎ𝑡−1,𝑥𝑡] +  𝑏𝑖) 

 

(4) 

𝐶𝑡̃ =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑊𝑐 ⋅ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝐶) 

 

(5) 

𝐶𝑡 = 𝑓𝑡  ∙  𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶𝑡̃ 

 

(6) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑜) 

 

(7) 

ℎ𝑡 =  𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝐶𝑡) 

 

(8) 

𝑓𝑡 represents the forget gate, 𝑖𝑡 is the input gate, 𝐶𝑡̃  is the cell state, 𝑜𝑡 is the 

output gate, and ℎ𝑡 is the hidden state at time 𝑡. The LSTM model was trained 

using the Adam optimizer with a learning rate of 0.001, and its loss function was 

defined as the Mean Squared Error (MSE):  

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑛

𝑖=1

 (9) 

𝑌𝑖 is the actual transaction volume, and 𝑌̂𝑖 is the predicted value. An early 

stopping mechanism was applied to prevent overfitting. 

An anomaly detection framework was implemented using the Isolation Forest 

algorithm to identify anomalous transaction patterns. This method is effective in 

detecting outliers in high-dimensional datasets by isolating anomalies through 

recursive partitioning. The anomaly score in the Isolation Forest is given by: 

𝑆(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛)  (10) 

𝑆(𝑥, 𝑛) is the anomaly score, 𝐸(ℎ(𝑥)) is the expected path length of a given 

observation 𝑥 and 𝑐(𝑛) is the average path length of an unsuccessful search in 

a binary tree. The anomaly detection process involved defining baseline trends 

using historical data, applying Isolation Forest with 100 trees and a 

contamination factor 0.05, and flagging transactions that significantly deviated 

from expected trends. A correlation analysis was conducted to investigate 

whether detected anomalies aligned with external factors such as market 

fluctuations, regulatory announcements, and network stress events. 

Model performance was evaluated using multiple error metrics. The forecasting 

models were assessed using Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and the R² score. These metrics are defined as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑛

𝑖=1

 

 

(11) 
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𝑅2 = 1 −
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1

(𝑌𝑖 − 𝑌)
2  

 

(12) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑛

𝑖=1

 (13) 

𝑌  represents the mean of actual transaction volumes. The anomaly detection 

model was evaluated based on precision and recall, ensuring that flagged 

anomalies corresponded to genuine irregular transaction patterns. By 

integrating time series forecasting with anomaly detection, this study provides 

a comprehensive analysis of Ripple transaction patterns, offering insights into 

market behavior, liquidity trends, and potential security threats within the XRP 

ecosystem. The following algorithm 1 outlines the systematic methodology 

employed in this study to analyze temporal transaction patterns in the Ripple 

(XRP) network, encompassing data preprocessing, exploratory data analysis, 

time series forecasting using ARIMA and LSTM models, and anomaly detection 

through the Isolation Forest approach. 

Algorithm 1 Ripple Transaction Analysis 

Input: 

𝐷 = {(𝑡𝑖 , 𝑉𝑖 , 𝐶𝑖 , 𝑀𝑖) ∣ 𝑖 = 1,2, … , 𝑛} 
where 𝑡𝑖= timestamp, 𝑉𝑖= transaction volume, 𝐶𝑖= transaction count, 𝑀𝑖= metadata 

Output: 

𝑌̂𝑡= forecasted transaction volumes 

𝐴= detected anomalies 

Evaluation metrics = { MAE, RMSE, 𝑅2, Precision, Recall } 

Step 1: Data Preprocessing 

1. Remove duplicate and missing records: 

𝐷 ← Clean(𝐷) 

2. Convert timestamps to standard datetime format: 

𝑡𝑖 ← Datetime(𝑡𝑖),  ∀𝑖 
3. Aggregate transactions by day: 

𝑉𝑑 = ∑ 𝑉𝑖 , 𝐶𝑑 = count(𝑖 ∈ 𝑑)

𝑖∈𝑑

 

4. Normalize transaction volume using min-max normalization: 

𝑉𝑑
′ =

𝑉𝑑 − min (𝑉𝑑)

max (𝑉𝑑) − min (𝑉𝑑)
 

Step 2: Exploratory Data Analysis (EDA) 

1. Compute descriptive statistics: 

𝜇 = mean(𝑉𝑑
′), 𝜎 = std(𝑉𝑑

′), 𝛾 = skew(𝑉𝑑
′) 

2. Compute correlation coefficients: 

𝜌(𝑉′, 𝐶, 𝑀) 

3. Visualize time series, histograms, and boxplots to identify trends, seasonality, and 

outliers. 

Step 3: Time Series Forecasting 

(a) ARIMA Model 

1. Perform stationarity test (ADF) on 𝑉𝑑
′: 

If non-stationary → difference series until stationary. 

2. Determine ARIMA parameters (𝑝, 𝑑, 𝑞)using ACF and PACF. 

3. Define ARIMA model: 

𝑌𝑡 = 𝑐 + ∑ 𝜙𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜃𝑗𝜀𝑡−𝑗 + 𝜀𝑡

𝑞

𝑗=1

 

where 𝜀𝑡is white noise. 

4. Select optimal parameters using grid search and AIC minimization. 

5. Forecast transaction volumes: 
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𝑌̂𝑡
(ARIMA)

= Predict(𝑌𝑡, ℎ) 

(b) LSTM Model 

1. Prepare sequential data: 

𝑋𝑡 = [𝑉𝑡−𝑘
′ , … , 𝑉𝑡−1

′ ], 𝑌𝑡 = 𝑉𝑡
′ 

2. Define LSTM cell equations: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶̃𝑡 = tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡) 

3. Train using Adam optimizer (𝜂 = 0.001), with loss function: 

MSE =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑛

𝑖=1

 

4. Apply early stopping to prevent overfitting. 

5. Forecast using trained model: 

𝑌̂𝑡
(LSTM)

= 𝑓LSTM(𝑋𝑡) 

Step 4: Anomaly Detection (Isolation Forest) 

1. Define baseline data 𝐵 ⊂ 𝐷daily. 

2. Train Isolation Forest with parameters: 

𝑛trees = 100, contamination = 0.05 

3. Compute anomaly score: 

𝑆(𝑥, 𝑛) = 2
−

𝐸[ℎ(𝑥)]
𝑐(𝑛)  

where 𝐸[ℎ(𝑥)]is the average path length, 𝑐(𝑛)is the normalization factor. 

4. Flag anomalies: 

𝐴 = {𝑥 ∣ 𝑆(𝑥, 𝑛) > 𝜏} 
5. Analyze correlation between 𝐴and external events (market fluctuations, regulations, 

stress events) 

Step 5: Model Evaluation 

1. Compute forecasting performance metrics: 

MAE =
1

𝑛
∑ ∣ 𝑌𝑖 − 𝑌̂𝑖 ∣

𝑛

𝑖=1

 

MSE =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)2

𝑛

𝑖=1

 

RMSE = √MSE 

𝑅2 = 1 −
∑ (𝑌𝑖 − 𝑌̂𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖 − 𝑌̄)2𝑛

𝑖=1

 

2. Compute anomaly detection metrics: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

3. Compare ARIMA and LSTM performances 

Step 6: Integration and Interpretation 

1. Combine results: 

Insights = 𝑓(𝑌̂𝑡
(ARIMA)

, 𝑌̂𝑡
(LSTM)

, 𝐴) 

 

2. Interpret findings in the context of market behavior, liquidity trends, and potential 

security anomalies. 

3. Output final results: 

{𝑌̂𝑡, 𝐴,MAE,RMSE, 𝑅2,Precision,Recall,Insights} 
End Algorithm 

Result 

The dataset was initially analyzed to understand the general characteristics of 

transactions within the Ripple (XRP) network transactions. A preliminary 

statistical analysis revealed that transaction volumes varied significantly over 
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time, with noticeable fluctuations across different periods. These variations 

suggest that multiple external factors, such as market conditions, regulatory 

changes, and network congestion, influence network activity. In certain periods, 

extreme spikes in transaction volume were observed, indicating sudden surges 

in activity. These spikes could be attributed to large institutional transfers, 

speculative trading, or network events such as protocol upgrades and major 

exchange listings. Additionally, periods of low transaction volume were also 

identified, potentially reflecting reduced trading interest or market stabilization 

phases.  

Further analysis of transaction frequency and volume distribution indicated a 

right-skewed pattern, where the majority of transactions involved relatively small 

amounts of XRP, while a small number of high-value transactions accounted for 

a disproportionately large share of the total transaction volume. This distribution 

suggests that while the Ripple network facilitates numerous microtransactions, 

a few exceptionally large transactions exert a significant impact on overall 

market activity. Such a pattern could be indicative of major financial institutions 

or whales executing high-value transfers, as well as potential batch processing 

of transactions by payment service providers. The summary statistics of XRP 

transactions are presented in table 1, which provides key insights into the 

spread and concentration of transaction values. The substantial difference 

between the average and maximum transaction volumes further supports the 

observation that while most transactions remain relatively small, a few large 

transfers dominate the network’s total value flow. 

Table 1 Summary Statistics of XRP Transactions 

Metric Value 

Total Transactions 1,200,000 

Average Transaction Volume 500 XRP 

Median Transaction Volume 320 XRP 

Maximum Transaction Volume 50,000 XRP 

Minimum Transaction Volume 0.1 XRP 

To further explore the temporal behavior of transactions, the daily transaction 

volume was plotted over time. Figure 2 illustrates the variation in XRP 

transaction volume per day, revealing notable trends and fluctuations 

throughout the observed period. The chart highlights periods of increased 

transaction activity, which may be associated with external market factors, such 

as major announcements from Ripple Labs, cryptocurrency exchange 

integrations, or fluctuations in XRP price. Additionally, regulatory changes or 

macroeconomic events could have contributed to sudden spikes in transaction 

volume, reflecting shifts in market sentiment. 

Beyond the short-term fluctuations, the chart also reveals potential cyclical 

patterns in transaction activity. Recurring trends suggest that XRP transaction 

volumes may be influenced by seasonal factors, such as financial quarter-end 

settlements, institutional trading cycles, or automated transaction batching by 

payment processors. Identifying these temporal patterns is crucial for 

understanding market behavior, predicting future transaction trends, and 

optimizing blockchain network efficiency. The presence of these variations 

underscores the importance of using time series models to capture both short-
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term volatility and long-term trends in transaction activity. 

 

Figure 2 Daily Transaction Volume in the Ripple (XRP) Network 

Time series decomposition was applied to analyze the underlying components 

of transaction volume, specifically identifying long-term trends, seasonal 

variations, and residual components. The decomposition results revealed a 

clear upward trend in transaction volume over an extended period, indicating 

the growing adoption and utilization of the Ripple network. This upward 

trajectory aligns with broader industry trends, including increasing institutional 

interest, higher liquidity on major exchanges, and expanding use cases for XRP 

in cross-border payments. However, despite the overall growth, periods of sharp 

fluctuations were observed, suggesting that transaction volume is also 

influenced by external events such as regulatory announcements, market 

sentiment shifts, and network optimizations. A pronounced seasonal pattern 

was also detected, characterized by periodic increases in transaction activity. 

These seasonal fluctuations may correspond to financial quarter-end 

settlements, institutional trading cycles, or strategic liquidity management by 

large market participants. The presence of weekly and monthly cycles suggests 

that user behavior follows predictable patterns, possibly due to automated 

trading algorithms, payment processor schedules, or network adjustments. To 

better understand these transaction volume trends, autoregressive models such 

as ARIMA and deep learning approaches like LSTM were implemented. While 

ARIMA demonstrated strong performance in capturing short-term 

dependencies and linear trends, LSTM proved to be more effective in modeling 

complex, non-linear patterns and long-term dependencies (see table 2). The 

ability of LSTM to learn sequential dependencies enabled it to detect intricate 

transaction volume fluctuations, making it a valuable tool for forecasting and 

anomaly detection in blockchain-based financial ecosystems. 

Table 2 ARIMA vs. LSTM Forecasting Performance 

Model MAE RMSE R² Score 

ARIMA 45.3 60.7 0.82 

LSTM 30.2 45.8 0.91 

A comprehensive evaluation of the forecasting performance was conducted 
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using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to 

assess the predictive accuracy of the ARIMA and LSTM models. The results 

revealed that the LSTM model consistently outperformed ARIMA across 

multiple evaluation metrics, demonstrating a superior ability to capture both 

long-term dependencies and sudden fluctuations in transaction volumes. This 

enhanced performance can be attributed to LSTM’s capacity to learn intricate 

temporal patterns and adapt to dynamic market conditions, making it particularly 

effective in handling the volatility inherent in the Ripple (XRP) network. In 

contrast, ARIMA, which relies on linear assumptions and focuses primarily on 

short-term correlations, struggled to accurately model the non-linear and 

complex nature of blockchain transaction data. While ARIMA managed to track 

gradual changes in transaction volumes, it exhibited noticeable lags during 

periods of rapid market activity, leading to underpredictions in high-volatility 

scenarios. The ability of LSTM to account for sequential dependencies proved 

crucial in forecasting sudden surges and drops, aligning more closely with 

actual transaction patterns. In addition to trend forecasting, anomaly detection 

techniques were implemented to identify irregular transaction behaviors that 

deviated from the expected trends. The integration of methods such as Isolation 

Forest allowed for the detection of anomalous periods, often coinciding with 

external events such as regulatory announcements, liquidity shifts, and market-

driven spikes in transaction activity. These findings emphasize the value of 

leveraging deep learning techniques like LSTM for enhancing prediction 

accuracy and detecting irregularities in complex, high-frequency transactional 

data within the Ripple network. To gain deeper insights into the performance of 

the forecasting models, figures 3 and figure 4 illustrate the comparison between 

actual transaction volumes and the predictions generated by the ARIMA and 

LSTM models, respectively. 

 

Figure 3 ARIMA Model: Actual vs. Predicted Transaction Volume in the Ripple (XRP) 

Network 

In figure 3, the ARIMA model’s predictions align closely with the short-term 

fluctuations in transaction volume, effectively capturing local patterns and 

abrupt changes over shorter intervals. However, the model shows noticeable 

limitations during periods of rapid transaction spikes, where it tends to 

underpredict the actual volumes. This underperformance can be attributed to 

ARIMA’s reliance on linear assumptions, making it less effective in modeling the 

non-linear trends and sudden market shifts often observed in Ripple (XRP) 

transactions. In contrast, figure 4 showcases the LSTM model’s ability to handle 

these complexities more effectively. The LSTM predictions exhibit a smoother 

alignment with the overall transaction trends, particularly during periods of high 
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volatility. This highlights LSTM’s strength in capturing long-term dependencies 

and recognizing intricate temporal patterns, which are crucial in accurately 

forecasting blockchain transaction volumes. The comparative analysis 

underscores the need for models capable of handling non-linear behaviors in 

dynamic environments such as the Ripple network. 

 

Figure 4 LSTM Model: Actual vs. Predicted Transaction Volume in the Ripple (XRP) 

Network 

In contrast, figure 4 shows the performance of the LSTM model, which 

demonstrates a stronger ability to capture long-term dependencies and adapt 

to non-linear transaction behaviors. The LSTM predictions align more closely 

with the upward and downward trends of the actual transaction volumes, 

especially during high-volatility periods. This highlights the effectiveness of 

LSTM in modeling complex temporal patterns present in the Ripple (XRP) 

transaction data. The comparative analysis suggests that LSTM provides a 

more accurate forecast, particularly in scenarios involving abrupt shifts and 

irregular transaction activities. 

Using a combination of statistical thresholding and machine learning-based 

methods such as Isolation Forest, anomalous transaction periods were 

successfully detected, particularly during high-volatility market phases. These 

anomalies often coincided with external events, such as sudden price swings, 

major regulatory developments, or unexpected surges in network activity. The 

ability to detect and analyze these anomalies provides valuable insights into 

potential security threats, market manipulations, or unusual liquidity 

movements, reinforcing the importance of integrating anomaly detection 

mechanisms in blockchain transaction monitoring. Table 3 presents the results 

of the anomaly detection process, highlighting the specific Ripple (XRP) 

transactions identified as anomalous based on deviations from baseline trends 

using the Isolation Forest algorithm. 

Table 3 Anomalous Transactions Detected 

Date Transaction Volume (XRP) Anomaly Score 

2024-01-15 10,500 0.95 

2024-03-07 22,300 0.98 

2024-05-22 18,700 0.97 

These anomalies exhibited a strong correlation with external factors, including 
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regulatory announcements, exchange inflows, and network stress events, 

which likely contributed to transaction spikes. Regulatory developments, such 

as new government policies on cryptocurrency taxation or compliance 

measures, often triggered sudden surges in transaction activity as users 

adjusted their holdings in response to legal uncertainties. Similarly, large 

exchange inflows, particularly from institutional investors or whale accounts, led 

to abrupt increases in transaction volume, reflecting strategic market positioning 

or liquidity redistribution. Additionally, periods of network congestion and stress 

events, such as unexpected downtimes, transaction bottlenecks, or security-

related incidents, further amplified transaction anomalies. These findings 

suggest that external market forces play a crucial role in shaping transaction 

patterns within the Ripple network, highlighting the importance of integrating 

real-world events into blockchain transaction analysis. 

Discussion 

The findings of this study provide valuable insights into the temporal dynamics 

of transactions within the Ripple (XRP) network, highlighting key trends, cyclical 

patterns, and anomalous behaviors. The time series analysis revealed a clear 

upward trend in transaction volume, indicating increasing adoption and network 

utilization over time. This growth aligns with broader industry trends, including 

greater institutional participation, expanding cross-border payment use cases, 

and enhanced liquidity across major exchanges. However, the presence of high 

volatility periods suggests that XRP transactions are highly sensitive to external 

factors, such as regulatory developments, market speculation, and 

macroeconomic conditions. 

The detection of seasonal and cyclical patterns further underscores the 

structured nature of XRP transaction behaviors. The observed weekly and 

monthly cycles suggest that institutional trading strategies, automated payment 

processing, and network optimizations influence transaction volume at regular 

intervals. These periodic trends highlight the need for further exploration into 

how specific events, such as financial quarter-end settlements or liquidity 

management by large market participants, impact the network’s transaction 

flow. Understanding these cycles could be beneficial for predicting future 

transaction activity and optimizing network efficiency. From a forecasting 

perspective, the comparative evaluation of ARIMA and LSTM models 

demonstrated that LSTM outperformed ARIMA in capturing long-term 

dependencies and non-linear trends. While ARIMA effectively modeled short-

term patterns, its reliance on linear assumptions limited its ability to account for 

sudden fluctuations and irregular transaction spikes. In contrast, LSTM’s ability 

to learn sequential dependencies enabled it to provide more accurate forecasts, 

making it a more suitable approach for blockchain transaction prediction in 

volatile market conditions. These results suggest that deep learning models, 

particularly recurrent neural networks, could be instrumental in enhancing 

predictive analytics for blockchain networks. 

Beyond trend analysis, anomaly detection played a crucial role in identifying 

irregular transaction patterns. The application of Isolation Forest successfully 

detected anomalous transaction periods, particularly during high-volatility 

market phases. Many of these anomalies were correlated with external events, 

such as regulatory announcements, exchange inflows, and network stress 

events, indicating potential causative factors behind transaction spikes. The 
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ability to detect and analyze these anomalies is critical for risk management, 

fraud detection, and the early identification of potential security threats in 

blockchain transactions. Future research could expand on this by integrating 

real-time event tracking with anomaly detection models to enhance blockchain 

monitoring systems. While this study provides significant contributions to 

understanding XRP transaction dynamics, several limitations should be 

acknowledged. First, the analysis primarily focuses on transaction volume and 

frequency without considering additional on-chain metrics such as gas fees, 

transaction confirmation times, or wallet clustering. Incorporating these factors 

could provide a more comprehensive view of network activity. Additionally, while 

LSTM demonstrated superior predictive performance, further benchmarking 

against other advanced models, such as Transformer-based architectures, 

could provide deeper insights into improving transaction forecasting accuracy. 

Finally, future studies should explore the role of off-chain factors, such as 

exchange trading behaviors and macroeconomic indicators, in shaping 

transaction volume trends within the Ripple network. 

Conclusion 

This study examined the temporal patterns and transaction volume trends within 

the Ripple (XRP) network using time series analysis. The findings revealed a 

clear upward trend in transaction volume, indicating increased adoption and 

utilization of the Ripple blockchain. Additionally, seasonal and cyclical patterns 

were observed, suggesting that institutional trading activities, automated 

payment processes, and network optimizations contribute to periodic 

fluctuations in transaction activity. The results highlight that transaction volume 

is not only influenced by organic user activity but also by external factors such 

as regulatory announcements, exchange inflows, and market volatility. 

The forecasting analysis demonstrated that LSTM outperformed ARIMA in 

predicting transaction volumes, particularly in capturing complex, non-linear 

patterns and long-term dependencies. This result underscores the importance 

of deep learning approaches in modeling blockchain transaction trends, 

especially in highly dynamic and volatile environments. Furthermore, the 

application of anomaly detection techniques successfully identified irregular 

transaction patterns, many of which coincided with high-volatility periods or 

significant market events. These findings emphasize the necessity of advanced 

predictive analytics and real-time anomaly detection systems to enhance 

transparency, security, and efficiency within blockchain networks. While this 

study provides valuable insights into XRP transaction dynamics, several areas 

remain open for future exploration. One potential direction is the incorporation 

of additional on-chain metrics, such as transaction fees, confirmation times, and 

wallet clustering, to develop a more comprehensive understanding of 

transaction behaviors. Another avenue for research is the exploration of 

advanced predictive modeling techniques, including Transformer-based 

architectures or hybrid approaches combining traditional statistical methods 

with deep learning models, to further improve forecasting accuracy. 

Additionally, future studies could investigate the impact of off-chain factors, such 

as macroeconomic indicators, cryptocurrency exchange trading behaviors, and 

social sentiment analysis, to understand how external events influence 

blockchain transaction patterns. The development of real-time anomaly 

detection systems could also enhance security and fraud detection mechanisms 
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by enabling proactive monitoring of unusual activities. Furthermore, expanding 

the study to conduct a cross-network comparative analysis with other 

blockchain ecosystems, such as Ethereum, Bitcoin, or Solana, could provide 

deeper insights into structural differences, adoption trends, and network 

efficiency. By addressing these research directions, future work can contribute 

to developing more robust analytical frameworks for understanding, predicting, 

and securing transactions within decentralized financial networks. These 

advancements will not only improve blockchain network efficiency but also 

support the broader adoption of cryptocurrencies and distributed ledger 

technologies in global financial systems. 
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