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ABSTRACT

This study analyzes the temporal patterns and transaction volume trends in the Ripple
(XRP) network using time series analysis. The dataset comprises over 1.2 million
transactions spanning three years, allowing for a comprehensive examination of long-
term trends and seasonal fluctuations. Summary statistics reveal a right-skewed
distribution of transaction volume, where a majority of transactions involve relatively
small amounts, while a few high-value transactions contribute disproportionately to
overall network activity. Time series decomposition identifies a clear upward trend in
transaction volume, with notable seasonal patterns corresponding to weekly and
monthly cycles. These periodic trends suggest institutional trading behaviors, liquidity
management strategies, and external market influences. Comparative forecasting
analysis between ARIMA and LSTM models demonstrates that LSTM achieves
superior predictive accuracy, with a 30% lower Mean Absolute Error (MAE) and a
25% reduction in Root Mean Squared Error (RMSE) compared to ARIMA. These
results highlight the effectiveness of deep learning in capturing non-linear transaction
dynamics within the blockchain ecosystem. Furthermore, anomaly detection using
Isolation Forest successfully identifies transactional irregularities, particularly during
periods of high market volatility and regulatory shifts. Several anomalous transaction
spikes coincide with major market events, such as sudden exchange inflows and
network congestion, reinforcing the role of external factors in influencing transaction
activity. These findings emphasize the need for advanced forecasting techniques and
real-time anomaly detection systems to improve transaction monitoring and enhance
security within blockchain networks. Future research could integrate additional on-
chain metrics, off-chain factors, and alternative deep learning models to refine
predictive capabilities and support more resilient blockchain analytics frameworks.

Keywords Blockchain, Ripple (XRP), Time Series Analysis, Anomaly Detection,
ARIMA, LSTM, Transaction Volume Trends

INTRODUCTION

Blockchain technology has transformed digital finance by providing a
decentralized, transparent, and secure framework for processing transactions
[1]. Among the various blockchain networks, Ripple (XRP) stands out as a
specialized platform designed for fast and cost-effective cross-border payments
[2]. Unlike proof-of-work (PoW)-based cryptocurrencies such as Bitcoin and
Ethereum, Ripple operates on a consensus algorithm, allowing transactions to
be validated in seconds with minimal energy consumption [3]. Due to its
increasing adoption by financial institutions, businesses, and payment service
providers, a comprehensive analysis of transaction volume trends and temporal
patterns within the Ripple network is essential to understand its growth,
efficiency, and vulnerabilities [4]. The analysis of blockchain transactions
provides valuable insights into network behavior, user activity, and security
risks. Time series analysis has been widely applied to study transaction volume,
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gas fees, and network congestion in major blockchain platforms such as Bitcoin
and Ethereum [5]. However, limited research has been conducted on Ripple’s
unique transaction structure and its temporal evolution. Given that Ripple is
increasingly being used for institutional settlements, remittances, and liquidity
provisioning, understanding its long-term trends, periodic fluctuations, and
anomalous transaction spikes is crucial for ensuring network stability and
security [6]. One of the key challenges in blockchain transaction analysis is the
presence of high volatility and irregular transaction patterns, which can be
influenced by market speculation, regulatory changes, and large institutional
transfers [7]. Traditional statistical models, such as Autoregressive Integrated
Moving Average (ARIMA), have been used to forecast financial time series but
often fail to capture complex, non-linear dependencies present in blockchain
transactions [8]. In contrast, deep learning models such as Long Short-Term
Memory (LSTM) networks offer superior performance in modeling long-term
temporal dependencies and irregular patterns [9]. Additionally, detecting
anomalies in blockchain transactions is essential for identifying potential
security threats, fraud, and market manipulations, which requires the application
of machine learning-based anomaly detection techniques such as Isolation
Forest.

This study aims to investigate transaction volume trends and anomalies in the
Ripple (XRP) network using time series decomposition, predictive modeling,
and anomaly detection techniques. The specific objectives of this research are
to analyze the temporal evolution of XRP transactions, including long-term
trends, seasonal fluctuations, and extreme transaction events, to compare the
effectiveness of ARIMA and LSTM models in forecasting future transaction
volumes and identifying key factors influencing transaction behavior, to detect
anomalous transaction patterns that may indicate market manipulations,
regulatory impacts, or network stress events using Isolation Forest, and to
provide insights into how Ripple’s transaction dynamics compare with other
blockchain networks and how predictive analytics can be used to enhance
transaction monitoring.

This study makes several contributions to the field of blockchain analytics and
predictive modeling. First, by examining over 1.2 million XRP transactions
spanning three years, this study provides an in-depth analysis of seasonal
patterns, trend behaviors, and extreme transaction fluctuations in the Ripple
network. Second, a comparative evaluation of ARIMA and LSTM models
demonstrates the effectiveness of deep learning in capturing non-linear
transaction trends, with LSTM reducing Mean Absolute Error (MAE) by 30% and
Root Mean Squared Error (RMSE) by 25% compared to ARIMA. Third, the
application of the Isolation Forest successfully detects transaction anomalies,
revealing correlations with market volatility, regulatory decisions, and exchange
inflows, which can be crucial for fraud detection and risk assessment. Lastly,
the findings emphasize the importance of real-time predictive analytics in
blockchain ecosystems, highlighting potential applications in fraud prevention,
network efficiency optimization, and market stability assessments.

Literature Review

Blockchain transaction analysis has become an essential area of research due
to its implications in financial stability, fraud detection, and network efficiency.
Various studies have examined transaction volume trends, forecasting
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techniques, and anomaly detection methods in blockchain ecosystems. This
study builds upon previous research by focusing on Ripple (XRP) transaction
patterns, comparing traditional and deep learning forecasting methods, and
applying anomaly detection techniques. Several studies have analyzed
blockchain transaction behavior using historical data to understand network
efficiency, user activity, and market dynamics. Greaves and Au [10] conducted
an early exploration of Bitcoin transactions and found that daily transaction
counts exhibit periodic spikes influenced by speculative trading and
macroeconomic factors. Similarly, Li et al. [11] expanded this analysis to
Ethereum and identified that transaction volumes correlate with gas fees,
indicating congestion periods during network demand surges. Unlike proof-of-
work (PoW) blockchains, Ripple (XRP) operates on a consensus-based
protocol, which offers faster transaction settlement and lower fees.

However, fewer studies have examined its transaction volume trends. Ferdous
et al. [12] analyzed XRP transaction volume and liquidity flows, discovering that
high-value transactions often occur at the end of financial quarters, likely due to
institutional settlements and liquidity. Wu et al. [13] further examined XRP
network activity and identified that transaction clusters exhibit seasonal trends,
particularly around regulatory announcements and market events. These
findings suggest that Ripple's transaction behavior may differ from Bitcoin and
Ethereum, necessitating further research into its temporal patterns and volume
fluctuations. Predicting transaction volume in blockchain networks is
challenging due to high volatility, sudden spikes, and external market
influences. Several studies have compared statistical and machine learning-
based forecasting models to analyze blockchain time series data. Contreras et
al. [14] applied ARIMA models to Bitcoin transaction data, finding that short-
term forecasts are accurate but fail to capture sudden market shifts. Similarly,
Kaufman [15] used SARIMA models for Ethereum gas fee predictions,
achieving moderate accuracy but struggling with long-term trends. More
recently, deep learning models have outperformed traditional statistical
methods in financial time series forecasting. McNally et al. [16] compared LSTM
networks and ARIMA models for Bitcoin price prediction, reporting that LSTM
reduced Mean Absolute Error (MAE) by 25% compared to ARIMA. Zhao et al.
[17] extended this approach to Ethereum transaction forecasting and found that
LSTM improved Root Mean Squared Error (RMSE) by 18%, demonstrating its
superior ability to model long-term dependencies and non-linear trends.

Blockchain-specific adaptations of LSTM have also been explored. Xiong et al.
[18] applied Transformer-based architectures to blockchain transaction
forecasting, showing that self-attention mechanisms capture transaction
dependencies more effectively than recurrent networks. This study builds upon
these findings by comparing ARIMA and LSTM models for Ripple (XRP)
transaction forecasting, aiming to determine the most effective approach for
capturing its unique temporal transaction dynamics. Anomaly detection in
blockchain transactions is critical for fraud prevention, regulatory compliance,
and network security monitoring. Several studies have applied statistical and
machine learning techniques to detect suspicious activities in blockchain
networks. Monamo et al. [19] used k-means clustering to identify abnormal
Bitcoin transactions and found that fraudulent transactions often coincide with
exchange manipulations. Chen et al. [20] applied DBSCAN clustering to detect
wash trading patterns in Ethereum-based decentralized exchanges, highlighting
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anomalies in trading volumes. Unsupervised machine learning methods,
particularly Isolation Forest and Autoencoders, have demonstrated strong
performance in detecting blockchain transaction anomalies. Li et al. [21] used
an Isolation Forest to detect irregular transaction spikes in Ethereum and found
that anomalies often correlate with market crashes and speculative trading
behavior. Huang et al. [22] applied an autoencoder-based approach to detect
abnormal trading patterns in decentralized finance (DeFi) applications,
achieving a high precision rate in identifying fraudulent transactions. Deep
learning-based anomaly detection has also been explored. Zhang et al. [23]
proposed an LSTM-based anomaly detection framework for blockchain
networks, showing that Recurrent Neural Networks (RNNs) can effectively
identify sudden transaction volume surges linked to bot activities and price
manipulations. This study extends these methodologies by applying the
Isolation Forest to detect anomalies in the Ripple (XRP) network, correlating
irregular transaction patterns with external market events, regulatory changes,
and liquidity movements.

Despite extensive research on Bitcoin and Ethereum transaction patterns,
forecasting, and anomaly detection, studies on Ripple (XRP) transaction
behavior remain limited. Prior work has focused primarily on Proof-of-Work
(PoW) blockchains, leaving a gap in the understanding of consensus-based
networks such as Ripple. A detailed temporal analysis combining forecasting
and anomaly detection has not been explored extensively in the context of XRP.
Furthermore, while ARIMA and LSTM models have been compared for
blockchain price prediction, their effectiveness in XRP transaction volume
forecasting remains untested. Additionally, anomaly detection techniques such
as Isolation Forest have seen limited application to Ripple transactions. This
study addresses the above gaps by conducting a comprehensive temporal
analysis of XRP transaction volume trends, examining seasonal patterns, trend
behaviors, and extreme fluctuations over multiple years. It compares ARIMA
and LSTM models for forecasting Ripple transaction volumes, evaluating their
effectiveness in capturing short-term and long-term trends. Additionally, it
applies Isolation Forest for anomaly detection, identifying irregular transaction
periods and correlating anomalies with market events, liquidity shifts, and
external regulatory factors. This research contributes to the growing body of
blockchain studies by bridging gaps in Ripple transaction analytics, offering
valuable insights for financial analysts, blockchain developers, and regulatory
bodies.

Methods

This study employs a systematic approach to analyzing temporal transaction
patterns and volume trends in the Ripple (XRP) network using time series
analysis, forecasting models, and anomaly detection techniques. The
methodology consists of four main stages: data collection and preprocessing,
Exploratory Data Analysis (EDA), time series forecasting, and anomaly
detection. The dataset used in this study consists of Ripple (XRP) transaction
records, including timestamps, transaction volumes, transaction counts, and
associated metadata. Figure 1 illustrates the overall research workflow,
outlining the sequential steps of the study—from data collection and
preprocessing, exploratory data analysis, and time series forecasting using
ARIMA and LSTM models, to anomaly detection with Isolation Forest and
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performance evaluation through statistical metrics.

. — Anomaly Detection Evaluation Metrics
Time Series
Forecasting .
Defining baseline MAE

trends

RMSE

Applying Isolation
Faorest

Data Collection and
Preprocessing

Model Development

R? score

ARIMA Identifying anomalies

] LS Correlation analysis
Exploratary Data

Analysis

Figure 1 Research Step

The data was obtained from public blockchain archives and preprocessed to
ensure consistency and reliability. Preprocessing steps involved converting
timestamps to a standardized datetime format, removing duplicate entries and
missing values, and filtering out incomplete transactions. Additionally, raw
transaction data was aggregated into daily transaction volumes and counts to
facilitate time series modeling. To improve model convergence, transaction
volumes were normalized using min-max normalization, which is defined as
[24]:
X' = X Xmm (1)

Xmax - Xmin
X represents the original transaction volume, while X,,,;,, and X,,,, denotes the
minimum and maximum transaction volumes.

To gain an initial understanding of transaction behavior in the Ripple network,
an Exploratory Data Analysis (EDA) was conducted. Descriptive statistics,
including mean, median, standard deviation, and skewness, were computed to
examine the distribution of transactions. Trend analysis was performed to
identify long-term patterns and seasonal fluctuations in transaction volumes.
Additionally, correlation analysis was employed to investigate relationships
between transaction volume, transaction count, and external market factors.
Various visualization techniques, including time series plots, histograms, and
boxplots, were utilized to detect anomalies, outliers, and periodic trends in
transaction activity.

For time series forecasting, this study employed both statistical and deep
learning-based models, specifically the Autoregressive Integrated Moving
Average (ARIMA) and Long Short-Term Memory (LSTM) networks. The ARIMA
model was used as a benchmark for short-term forecasting, and its general form
is given by [25]:

14 q
Yt =c+ z ®th—i + z 9] Et_j+Et (2)
i=1 =1

Y; is the transaction volume at time t,c is a constant, @; are the autoregressive
coefficients, 6; are the moving average coefficients, and €, represents white
noise. To determine the appropriate ARIMA parameters (p, d, q) the Augmented
Dickey-Fuller (ADF) test was used to check stationarity, while the
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Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)
were examined to identify autoregressive and moving average terms. Grid
search optimization was applied to select the best-performing hyperparameters.

In addition to ARIMA, an LSTM-based deep learning model was implemented
to capture long-term dependencies and non-linear transaction patterns. The
LSTM model processes sequential data using gated memory units, defined as

follows [26]:
fo=o(Ws - [heyxe] + bf) 3)
i = a(W; - [he—y x| + by) (4)
C; =tanh tanh (W, - [he—1 %] + b¢) (5)
Co=f; " Cmq+ ip G (6)
0y =a(W, - [he—rx] + bo) (7)
h; = o, - tanh tanh (C,) (8)

f; represents the forget gate, i, is the input gate, C, is the cell state, o, is the
output gate, and h, is the hidden state at time t. The LSTM model was trained
using the Adam optimizer with a learning rate of 0.001, and its loss function was
defined as the Mean Squared Error (MSE):

n
MSE= 2 (v~ %)’ (9)
i=1

Y; is the actual transaction volume, and Y; is the predicted value. An early
stopping mechanism was applied to prevent overfitting.
An anomaly detection framework was implemented using the Isolation Forest
algorithm to identify anomalous transaction patterns. This method is effective in
detecting outliers in high-dimensional datasets by isolating anomalies through
recursive partitioning. The anomaly score in the Isolation Forest is given by:
_E(h(x))

Sx,n)=2 <0 (10)
S(x,n) is the anomaly score, E(h(x)) is the expected path length of a given
observation x and c(n) is the average path length of an unsuccessful search in
a binary tree. The anomaly detection process involved defining baseline trends
using historical data, applying Isolation Forest with 100 trees and a
contamination factor 0.05, and flagging transactions that significantly deviated
from expected trends. A correlation analysis was conducted to investigate
whether detected anomalies aligned with external factors such as market
fluctuations, regulatory announcements, and network stress events.

Model performance was evaluated using multiple error metrics. The forecasting
models were assessed using Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and the R?2 score. These metrics are defined as follows:
n
1 N2
MsE =2 ) (1~ ) (11)

i=1

Aljohani and Alnahdi (2025) J. Curr. Res. Blockchain. 279



Journal of Current Research in Blockchain

I (-1’

2
T ey (12)
v =
RMSE = E;(Yi -1) (13)

Y represents the mean of actual transaction volumes. The anomaly detection
model was evaluated based on precision and recall, ensuring that flagged
anomalies corresponded to genuine irregular transaction patterns. By
integrating time series forecasting with anomaly detection, this study provides
a comprehensive analysis of Ripple transaction patterns, offering insights into
market behavior, liquidity trends, and potential security threats within the XRP
ecosystem. The following algorithm 1 outlines the systematic methodology
employed in this study to analyze temporal transaction patterns in the Ripple
(XRP) network, encompassing data preprocessing, exploratory data analysis,
time series forecasting using ARIMA and LSTM models, and anomaly detection
through the Isolation Forest approach.

Algorithm 1 Ripple Transaction Analysis
Input:

D= {(tirVirCirMi) | i= 1,2, ...,Tl}
where t;= timestamp, V;= transaction volume, C;= transaction count, M;= metadata
Output:

Y,= forecasted transaction volumes
A= detected anomalies
Evaluation metrics = { MAE, RMSE, R?, Precision, Recall }
Step 1: Data Preprocessing
1. Remove duplicate and missing records:
D « Clean(D)
2. Convert timestamps to standard datetime format:
t; « Datetime(t;), Vi
3. Aggregate transactions by day:
Vg = Z Vi, Cq = count(i € d)
ied
4. Normalize transaction volume using min-max normalization:
V= V4 — min (V)
4™ max (V) — min (V)
Step 2: Exploratory Data Analysis (EDA)
1. Compute descriptive statistics:
u =mean(Vp),o = std(V;),y = skew(Vy)
2.  Compute correlation coefficients:
p(V',C,M)
3. Visualize time series, histograms, and boxplots to identify trends, seasonality, and
outliers.
Step 3: Time Series Forecasting
(a) ARIMA Model
1. Perform stationarity test (ADF) on V;:
If non-stationary — difference series until stationary.
2. Determine ARIMA parameters (p, d, g)using ACF and PACF.
3. Define ARIMA model:

P q
Yt =c+ z ¢th—i + Z gjgt—j + Et
i=1 j=1
where &,is white noise.

4. Select optimal parameters using grid search and AIC minimization.
5. Forecast transaction volumes:
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7 ARMA — Predict(Y,, b)
(b) LSTM Model

1. Prepare sequential data:

Xe = Vs Vil e = V/
2. Define LSTM cell equations:

fe = o(Wrlhe_1, x¢] + by)

Iy = o(Wilhe-1,x¢] + by)

Ce = tanh (W [he—q, %] + bc)

Cc=fiOC1+ti: OC

or = o(Wp[he—1,x¢] + by)

ht = 0¢ @ tanh (Ct)
3. Train using Adam optimizer (n = 0.001), with loss function:

n
1 R
MSE =;E (Y, — %;)?

=1
4. Apply early stopping to prevent overfitting.
5. Forecast using trained model:

7™ = fsmm(Xe)
Step 4: Anomaly Detection (Isolation Forest)
1. Define baseline data B < Dyjjjy-
2. Train Isolation Forest with parameters:
Nyees = 100, contamination = 0.05
3. Compute anomaly score:
_E[h®)]
S(x,n)=2 <M
where E[h(x)]is the average path length, c(n)is the normalization factor.
4. Flag anomalies:

A={x|5n)>r1}
5. Analyze correlation between Aand external events (market fluctuations, regulations,
stress events)
Step 5: Model Evaluation
1. Compute forecasting performance metrics:

n
1 _
MAEz—E 1Y, =%
n
i=1
n

1 PN
MSE = - (= 7’
i=1

1=
RMSE = {/MSE
n A~
S Y (e Ol

Y, (= 1)
2. Compute anomaly detection metrics:

Precision = —— Recall = —
ecision = 7 T Fp e = T T EN

3. Compare ARIMA and LSTM performances
Step 6: Integration and Interpretation
1. Combine results:

Insights = f£(7A"MY, g5 4y

2. Interpret findings in the context of market behavior, liquidity trends, and potential
security anomalies.
3. Output final results:
{¥,, AMAE,RMSE, R?,Precision,Recall,Insights}
End Algorithm

Result

The dataset was initially analyzed to understand the general characteristics of
transactions within the Ripple (XRP) network transactions. A preliminary
statistical analysis revealed that transaction volumes varied significantly over
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time, with noticeable fluctuations across different periods. These variations
suggest that multiple external factors, such as market conditions, regulatory
changes, and network congestion, influence network activity. In certain periods,
extreme spikes in transaction volume were observed, indicating sudden surges
in activity. These spikes could be attributed to large institutional transfers,
speculative trading, or network events such as protocol upgrades and major
exchange listings. Additionally, periods of low transaction volume were also
identified, potentially reflecting reduced trading interest or market stabilization
phases.

Further analysis of transaction frequency and volume distribution indicated a
right-skewed pattern, where the majority of transactions involved relatively small
amounts of XRP, while a small number of high-value transactions accounted for
a disproportionately large share of the total transaction volume. This distribution
suggests that while the Ripple network facilitates numerous microtransactions,
a few exceptionally large transactions exert a significant impact on overall
market activity. Such a pattern could be indicative of major financial institutions
or whales executing high-value transfers, as well as potential batch processing
of transactions by payment service providers. The summary statistics of XRP
transactions are presented in table 1, which provides key insights into the
spread and concentration of transaction values. The substantial difference
between the average and maximum transaction volumes further supports the
observation that while most transactions remain relatively small, a few large
transfers dominate the network’s total value flow.

Table 1 Summary Statistics of XRP Transactions

Metric Value
Total Transactions 1,200,000
Average Transaction Volume 500 XRP
Median Transaction Volume 320 XRP
Maximum Transaction Volume 50,000 XRP
Minimum Transaction Volume 0.1 XRP

To further explore the temporal behavior of transactions, the daily transaction
volume was plotted over time. Figure 2 illustrates the variation in XRP
transaction volume per day, revealing notable trends and fluctuations
throughout the observed period. The chart highlights periods of increased
transaction activity, which may be associated with external market factors, such
as major announcements from Ripple Labs, cryptocurrency exchange
integrations, or fluctuations in XRP price. Additionally, regulatory changes or
macroeconomic events could have contributed to sudden spikes in transaction
volume, reflecting shifts in market sentiment.

Beyond the short-term fluctuations, the chart also reveals potential cyclical
patterns in transaction activity. Recurring trends suggest that XRP transaction
volumes may be influenced by seasonal factors, such as financial quarter-end
settlements, institutional trading cycles, or automated transaction batching by
payment processors. ldentifying these temporal patterns is crucial for
understanding market behavior, predicting future transaction trends, and
optimizing blockchain network efficiency. The presence of these variations
underscores the importance of using time series models to capture both short-
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term volatility and long-term trends in transaction activity.

50000

45000

XRP)

¥ N w w B
[=] u =1 (vl o
o o =] [=] o
[=] = (=} (=] o
o =] =] [=] o

Total Transaction Volume (.

15000 5

10000

.
v

.-LQ)
Date

Figure 2 Daily Transaction Volume in the Ripple (XRP) Network

Time series decomposition was applied to analyze the underlying components
of transaction volume, specifically identifying long-term trends, seasonal
variations, and residual components. The decomposition results revealed a
clear upward trend in transaction volume over an extended period, indicating
the growing adoption and utilization of the Ripple network. This upward
trajectory aligns with broader industry trends, including increasing institutional
interest, higher liquidity on major exchanges, and expanding use cases for XRP
in cross-border payments. However, despite the overall growth, periods of sharp
fluctuations were observed, suggesting that transaction volume is also
influenced by external events such as regulatory announcements, market
sentiment shifts, and network optimizations. A pronounced seasonal pattern
was also detected, characterized by periodic increases in transaction activity.
These seasonal fluctuations may correspond to financial quarter-end
settlements, institutional trading cycles, or strategic liquidity management by
large market participants. The presence of weekly and monthly cycles suggests
that user behavior follows predictable patterns, possibly due to automated
trading algorithms, payment processor schedules, or network adjustments. To
better understand these transaction volume trends, autoregressive models such
as ARIMA and deep learning approaches like LSTM were implemented. While
ARIMA demonstrated strong performance in capturing short-term
dependencies and linear trends, LSTM proved to be more effective in modeling
complex, non-linear patterns and long-term dependencies (see table 2). The
ability of LSTM to learn sequential dependencies enabled it to detect intricate
transaction volume fluctuations, making it a valuable tool for forecasting and
anomaly detection in blockchain-based financial ecosystems.

Table 2 ARIMA vs. LSTM Forecasting Performance

Model MAE RMSE R2 Score
ARIMA 45.3 60.7 0.82
LSTM 30.2 45.8 0.91

A comprehensive evaluation of the forecasting performance was conducted
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using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to
assess the predictive accuracy of the ARIMA and LSTM models. The results
revealed that the LSTM model consistently outperformed ARIMA across
multiple evaluation metrics, demonstrating a superior ability to capture both
long-term dependencies and sudden fluctuations in transaction volumes. This
enhanced performance can be attributed to LSTM’s capacity to learn intricate
temporal patterns and adapt to dynamic market conditions, making it particularly
effective in handling the volatility inherent in the Ripple (XRP) network. In
contrast, ARIMA, which relies on linear assumptions and focuses primarily on
short-term correlations, struggled to accurately model the non-linear and
complex nature of blockchain transaction data. While ARIMA managed to track
gradual changes in transaction volumes, it exhibited noticeable lags during
periods of rapid market activity, leading to underpredictions in high-volatility
scenarios. The ability of LSTM to account for sequential dependencies proved
crucial in forecasting sudden surges and drops, aligning more closely with
actual transaction patterns. In addition to trend forecasting, anomaly detection
techniques were implemented to identify irregular transaction behaviors that
deviated from the expected trends. The integration of methods such as Isolation
Forest allowed for the detection of anomalous periods, often coinciding with
external events such as regulatory announcements, liquidity shifts, and market-
driven spikes in transaction activity. These findings emphasize the value of
leveraging deep learning techniques like LSTM for enhancing prediction
accuracy and detecting irregularities in complex, high-frequency transactional
data within the Ripple network. To gain deeper insights into the performance of
the forecasting models, figures 3 and figure 4 illustrate the comparison between
actual transaction volumes and the predictions generated by the ARIMA and
LSTM models, respectively.

50000

45000

: MMM,MMMNMMK

Transaction Volume (XRP)

20000

15000

—— Actual Volume
—— ARIMA Prediction

10000

2024-01-01  2024-01-15 2024-02-01  2024-02-15 2024-03-01  2024-03-15 2024-04-01
Date

Figure 3 ARIMA Model: Actual vs. Predicted Transaction Volume in the Ripple (XRP)
Network

In figure 3, the ARIMA model’s predictions align closely with the short-term
fluctuations in transaction volume, effectively capturing local patterns and
abrupt changes over shorter intervals. However, the model shows noticeable
limitations during periods of rapid transaction spikes, where it tends to
underpredict the actual volumes. This underperformance can be attributed to
ARIMA'’s reliance on linear assumptions, making it less effective in modeling the
non-linear trends and sudden market shifts often observed in Ripple (XRP)
transactions. In contrast, figure 4 showcases the LSTM model’s ability to handle
these complexities more effectively. The LSTM predictions exhibit a smoother
alignment with the overall transaction trends, particularly during periods of high
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volatility. This highlights LSTM’s strength in capturing long-term dependencies
and recognizing intricate temporal patterns, which are crucial in accurately
forecasting blockchain transaction volumes. The comparative analysis
underscores the need for models capable of handling non-linear behaviors in
dynamic environments such as the Ripple network.

50000

40000

30000

Transaction Volume (XRP)

20000

—— Actual Volume

10000 = LSTM Prediction

2024-01-01 2024-01-15 2024-02-01 2024-02-15 2024-03-01 2024-03-15 2024-04-01
Date

Figure 4 LSTM Model: Actual vs. Predicted Transaction Volume in the Ripple (XRP)
Network

In contrast, figure 4 shows the performance of the LSTM model, which
demonstrates a stronger ability to capture long-term dependencies and adapt
to non-linear transaction behaviors. The LSTM predictions align more closely
with the upward and downward trends of the actual transaction volumes,
especially during high-volatility periods. This highlights the effectiveness of
LSTM in modeling complex temporal patterns present in the Ripple (XRP)
transaction data. The comparative analysis suggests that LSTM provides a
more accurate forecast, particularly in scenarios involving abrupt shifts and
irregular transaction activities.

Using a combination of statistical thresholding and machine learning-based
methods such as Isolation Forest, anomalous transaction periods were
successfully detected, particularly during high-volatility market phases. These
anomalies often coincided with external events, such as sudden price swings,
major regulatory developments, or unexpected surges in network activity. The
ability to detect and analyze these anomalies provides valuable insights into
potential security threats, market manipulations, or unusual liquidity
movements, reinforcing the importance of integrating anomaly detection
mechanisms in blockchain transaction monitoring. Table 3 presents the results
of the anomaly detection process, highlighting the specific Ripple (XRP)
transactions identified as anomalous based on deviations from baseline trends
using the Isolation Forest algorithm.

Table 3 Anomalous Transactions Detected

Date Transaction Volume (XRP) Anomaly Score
2024-01-15 10,500 0.95
2024-03-07 22,300 0.98
2024-05-22 18,700 0.97

These anomalies exhibited a strong correlation with external factors, including
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regulatory announcements, exchange inflows, and network stress events,
which likely contributed to transaction spikes. Regulatory developments, such
as new government policies on cryptocurrency taxation or compliance
measures, often triggered sudden surges in transaction activity as users
adjusted their holdings in response to legal uncertainties. Similarly, large
exchange inflows, particularly from institutional investors or whale accounts, led
to abrupt increases in transaction volume, reflecting strategic market positioning
or liquidity redistribution. Additionally, periods of network congestion and stress
events, such as unexpected downtimes, transaction bottlenecks, or security-
related incidents, further amplified transaction anomalies. These findings
suggest that external market forces play a crucial role in shaping transaction
patterns within the Ripple network, highlighting the importance of integrating
real-world events into blockchain transaction analysis.

Discussion

The findings of this study provide valuable insights into the temporal dynamics
of transactions within the Ripple (XRP) network, highlighting key trends, cyclical
patterns, and anomalous behaviors. The time series analysis revealed a clear
upward trend in transaction volume, indicating increasing adoption and network
utilization over time. This growth aligns with broader industry trends, including
greater institutional participation, expanding cross-border payment use cases,
and enhanced liquidity across major exchanges. However, the presence of high
volatility periods suggests that XRP transactions are highly sensitive to external
factors, such as regulatory developments, market speculation, and
macroeconomic conditions.

The detection of seasonal and cyclical patterns further underscores the
structured nature of XRP transaction behaviors. The observed weekly and
monthly cycles suggest that institutional trading strategies, automated payment
processing, and network optimizations influence transaction volume at regular
intervals. These periodic trends highlight the need for further exploration into
how specific events, such as financial quarter-end settlements or liquidity
management by large market participants, impact the network’s transaction
flow. Understanding these cycles could be beneficial for predicting future
transaction activity and optimizing network efficiency. From a forecasting
perspective, the comparative evaluation of ARIMA and LSTM models
demonstrated that LSTM outperformed ARIMA in capturing long-term
dependencies and non-linear trends. While ARIMA effectively modeled short-
term patterns, its reliance on linear assumptions limited its ability to account for
sudden fluctuations and irregular transaction spikes. In contrast, LSTM’s ability
to learn sequential dependencies enabled it to provide more accurate forecasts,
making it a more suitable approach for blockchain transaction prediction in
volatile market conditions. These results suggest that deep learning models,
particularly recurrent neural networks, could be instrumental in enhancing
predictive analytics for blockchain networks.

Beyond trend analysis, anomaly detection played a crucial role in identifying
irregular transaction patterns. The application of Isolation Forest successfully
detected anomalous transaction periods, particularly during high-volatility
market phases. Many of these anomalies were correlated with external events,
such as regulatory announcements, exchange inflows, and network stress
events, indicating potential causative factors behind transaction spikes. The
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ability to detect and analyze these anomalies is critical for risk management,
fraud detection, and the early identification of potential security threats in
blockchain transactions. Future research could expand on this by integrating
real-time event tracking with anomaly detection models to enhance blockchain
monitoring systems. While this study provides significant contributions to
understanding XRP transaction dynamics, several limitations should be
acknowledged. First, the analysis primarily focuses on transaction volume and
frequency without considering additional on-chain metrics such as gas fees,
transaction confirmation times, or wallet clustering. Incorporating these factors
could provide a more comprehensive view of network activity. Additionally, while
LSTM demonstrated superior predictive performance, further benchmarking
against other advanced models, such as Transformer-based architectures,
could provide deeper insights into improving transaction forecasting accuracy.
Finally, future studies should explore the role of off-chain factors, such as
exchange trading behaviors and macroeconomic indicators, in shaping
transaction volume trends within the Ripple network.

Conclusion

This study examined the temporal patterns and transaction volume trends within
the Ripple (XRP) network using time series analysis. The findings revealed a
clear upward trend in transaction volume, indicating increased adoption and
utilization of the Ripple blockchain. Additionally, seasonal and cyclical patterns
were observed, suggesting that institutional trading activities, automated
payment processes, and network optimizations contribute to periodic
fluctuations in transaction activity. The results highlight that transaction volume
is not only influenced by organic user activity but also by external factors such
as regulatory announcements, exchange inflows, and market volatility.

The forecasting analysis demonstrated that LSTM outperformed ARIMA in
predicting transaction volumes, particularly in capturing complex, non-linear
patterns and long-term dependencies. This result underscores the importance
of deep learning approaches in modeling blockchain transaction trends,
especially in highly dynamic and volatile environments. Furthermore, the
application of anomaly detection techniques successfully identified irregular
transaction patterns, many of which coincided with high-volatility periods or
significant market events. These findings emphasize the necessity of advanced
predictive analytics and real-time anomaly detection systems to enhance
transparency, security, and efficiency within blockchain networks. While this
study provides valuable insights into XRP transaction dynamics, several areas
remain open for future exploration. One potential direction is the incorporation
of additional on-chain metrics, such as transaction fees, confirmation times, and
wallet clustering, to develop a more comprehensive understanding of
transaction behaviors. Another avenue for research is the exploration of
advanced predictive modeling techniques, including Transformer-based
architectures or hybrid approaches combining traditional statistical methods
with deep learning models, to further improve forecasting accuracy.

Additionally, future studies could investigate the impact of off-chain factors, such
as macroeconomic indicators, cryptocurrency exchange trading behaviors, and
social sentiment analysis, to understand how external events influence
blockchain transaction patterns. The development of real-time anomaly
detection systems could also enhance security and fraud detection mechanisms
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by enabling proactive monitoring of unusual activities. Furthermore, expanding
the study to conduct a cross-network comparative analysis with other
blockchain ecosystems, such as Ethereum, Bitcoin, or Solana, could provide
deeper insights into structural differences, adoption trends, and network
efficiency. By addressing these research directions, future work can contribute
to developing more robust analytical frameworks for understanding, predicting,
and securing transactions within decentralized financial networks. These
advancements will not only improve blockchain network efficiency but also
support the broader adoption of cryptocurrencies and distributed ledger
technologies in global financial systems.
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