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ABSTRACT

The increasing volume of blockchain transactions has raised significant concerns
regarding the detection of irregular and high-risk activities within decentralized
financial ecosystems. Conventional anomaly detection approaches tend to focus on
transactional values alone, often neglecting the structural relationships that define
user interactions. This study introduces a network-based anomaly detection
framework that integrates graph embedding and density-based clustering techniques
to identify abnormal transaction behaviours. Using a real-world blockchain transaction
dataset consisting of 1,316 unique addresses (nodes) and 2,709 transaction links
(edges), a directed network model was constructed to represent the flow of digital
assets between users. A Singular Value Decomposition (SVD)-based graph
embedding was employed to map network structures into a two-dimensional latent
space, followed by DBSCAN clustering to isolate low-density outliers. The results
indicate that approximately 34 nodes, or 2.6% of the total, were classified as
anomalous, exhibiting unusually high transaction volumes, disproportionate
connectivity, or bridging characteristics across distinct communities. These findings
demonstrate that combining topological representation learning with unsupervised
clustering effectively reveals hidden patterns of irregularity within blockchain
networks. The proposed framework provides a computationally efficient and
interpretable foundation for future integration with advanced graph learning models,
such as Graph Neural Networks (GNN), to enhance fraud detection and risk
assessment in decentralized systems.

Keywords Blockchain Transactions, Anomaly Detection, Graph Embedding, DBSCAN
Clustering, Network Analysis

INTRODUCTION

The emergence of blockchain technology has transformed the digital financial
landscape by introducing decentralized, transparent, and tamper-resistant
systems that eliminate the need for traditional intermediaries [1]. Through
distributed ledger mechanisms, blockchain enables all participants to share
synchronized transaction records, thereby enhancing security, trust, and
efficiency in digital transactions [2]. This innovation has found broad application
across domains such as financial technology, supply chain management, and
digital asset trading, where transparency and immutability are essential [3].
However, the pseudonymous and irreversible nature of blockchain transactions
also creates opportunities for misuse, including fraudulent trading, money
laundering, and market manipulation, which pose significant regulatory and
analytical challenges [4].

Anomaly detection has therefore become a key focus of blockchain research,
aimed at identifying suspicious activities or irregular transaction behaviors that
may indicate fraudulent intent [5]. Traditional anomaly detection methods
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generally rely on numerical features such as transaction amount, frequency, or
duration. While such methods can effectively identify individual statistical
outliers, they often fail to capture the relational and structural dependencies
among blockchain addresses. In decentralized ecosystems, transaction
behaviors form complex interaction networks, meaning that the relationship
between entities can be as important as the transactions themselves [6].
Ignoring these topological relationships can result in incomplete or misleading
detection outcomes, particularly when coordinated or network-based fraudulent
behaviors are involved.

To address this limitation, researchers have increasingly employed network-
based analytical frameworks that model blockchain transactions as graphs
consisting of nodes (addresses) and edges (transactions) [7]. This
representation allows for the extraction of structural properties such as degree
centrality, clustering coefficient, and community structure, which help reveal
behavioral relationships among entities that are not observable in conventional
tabular data. Furthermore, the rapid development of graph representation
learning has enabled more advanced approaches to anomaly detection, as
models can now learn vectorized node embeddings that preserve both local and
global network structures [8]. Among these methods, GNN and Graph
Convolutional Networks (GCN) have shown particular promise in learning non-
linear relationships and identifying subtle structural irregularities [9].

Despite their strong performance, deep graph-based models often require
extensive computational resources and can be difficult to interpret. To overcome
these challenges, this study introduces a computationally efficient and
interpretable framework for blockchain anomaly detection that combines graph
embedding with density-based clustering [10]. In this approach, blockchain
transactions are represented as a directed graph linking sending and receiving
addresses. An SVD-based graph embedding is used to project the network
structure into a two-dimensional latent space, followed by DBSCAN clustering
to detect anomalies based on density variations. This integration of topological
analysis and unsupervised learning allows the identification of irregular
transactional behaviors that deviate from normal network patterns.

The dataset used in this study consists of 1,316 nodes and 2,709 transaction
links, representing a diverse blockchain transaction network. Through the
proposed framework, approximately 34 nodes, equivalent to 2.6% of the total,
were classified as anomalous. These anomalies generally represent nodes with
disproportionately high transaction volumes, irregular connectivity, or bridging
positions between separate clusters [11]. Such patterns often indicate
aggregation wallets, automated trading agents, or concealed transactional
paths that warrant further investigation. The results demonstrate that
incorporating graph-based representations significantly enhances the accuracy
and interpretability of anomaly detection compared to traditional feature-based
methods [12].

In summary, this research contributes to the ongoing development of blockchain
analytics by presenting a scalable, interpretable, and data-driven framework for
anomaly detection. By combining graph embedding and density-based
clustering, the study provides a methodological foundation that can be extended
with Graph Neural Networks (GNNSs) or adaptive algorithms, such as HDBSCAN
and Local Outlier Factor (LOF), to improve anomaly sensitivity and robustness
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in future research [13].

Literature Review

Blockchain anomaly detection has emerged as a significant research area
within the broader fields of financial data analytics and network science. Early
studies primarily relied on statistical and rule-based methods, focusing on
transaction-level indicators such as frequency, volume, and temporal behaviour
[14]. These traditional approaches were effective in detecting individual
irregularities but could not capture structural dependencies between entities. As
blockchain networks evolved in complexity and scale, the limitations of these
techniques became more apparent, especially in identifying coordinated or
systemic anomalies involving multiple addresses [15].

Recent advancements in machine learning and artificial intelligence have
significantly expanded the scope of blockchain anomaly detection. Supervised
learning methods such as logistic regression, decision trees, and support vector
machines have been applied to classify risky or fraudulent transactions based
on labelled data [16]. However, due to the scarcity of ground truth labels in real-
world blockchain datasets, unsupervised methods have gained wider adoption.
Techniques like K-Means clustering, Isolation Forest, and Autoencoder-based
outlier detection have been shown to identify anomalies without prior knowledge
of class labels, offering a more flexible approach to behavioural modelling [17].
Nevertheless, these feature-based models often treat each transaction as an
independent instance, thereby overlooking the underlying relational context
among addresses [18].

To address this gap, researchers began to conceptualize blockchain data as
graph-structured networks, where each node represents an address and edges
denote transactions between participants. This network-based perspective
allows for the exploration of graph-theoretic properties such as centrality,
clustering coefficient, and path length, which can reveal hidden behavioral
dynamics within the ecosystem [19]. Graph-based representations are
particularly useful in distinguishing between legitimate users and potential
malicious actors based on their structural positions within the transaction
network. For instance, nodes exhibiting unusually high degrees or acting as
bridges between clusters may indicate laundering hubs or aggregation wallets
[20].

The introduction of graph representation learning further advanced the ability to
model blockchain interactions in a more expressive manner. Algorithms such
as DeepWalk, Node2Vec, and LINE were developed to generate vector
embeddings that preserve both local and global structural relationships within
the network [21]. These embeddings have been widely used to improve
anomaly detection, community detection, and link prediction tasks in blockchain
analytics. More sophisticated architectures, particularly GNN, have extended
these approaches by allowing neural models to iteratively aggregate information
from neighboring nodes, thereby learning non-linear and hierarchical
representations of network behavior [22]. Variants such as GCN and
GraphSAGE have been successfully applied in fraud detection and
cybersecurity contexts, demonstrating superior performance in capturing subtle
interaction patterns compared to classical methods [23].

Parallel to these developments, clustering algorithms based on density
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estimation have proven valuable in identifying anomalies within high-
dimensional embedding spaces. Among them, the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm has been widely
adopted due to its robustness in detecting clusters of arbitrary shape and its
ability to label sparse data points as outliers [24]. Unlike centroid-based
methods such as K-Means, DBSCAN does not require the specification of the
number of clusters beforehand, making it suitable for blockchain data where the
number of behavioural groups is often unknown. Additionally, newer extensions
such as Hierarchical DBSCAN (HDBSCAN) and LOF have improved cluster
detection accuracy in datasets with variable densities, offering more adaptive
anomaly detection frameworks [25].

In summary, existing literature demonstrates a clear progression from traditional
statistical models toward network-based and deep learning approaches for
blockchain anomaly detection. While deep graph learning models such as GNN
and GCN offer high representational power, they often involve substantial
computational overhead and reduced interpretability. This study builds upon
these prior works by proposing a hybrid and interpretable framework that
integrates graph embedding and density-based clustering. The approach seeks
to retain the analytical strength of graph-based modelling while maintaining the
computational simplicity necessary for large-scale blockchain applications.

Research Methodology

This study adopts a quantitative research design based on a network-oriented
analytical framework to detect anomalies in blockchain transactions. The
methodology integrates concepts from graph theory, representation learning,
and unsupervised machine learning, allowing for a comprehensive examination
of both behavioural and structural irregularities in blockchain data. The research
process, as illustrated in figure 1, consists of several sequential phases that
begin with data preprocessing, followed by graph construction, graph
embedding, anomaly detection, and evaluation of model performance.

Normalize values Encode categorical data

start i ion Data } Data i }——I Graph
Assign welghts amount and
froquency
Normal Node Yes
’ Adjacency matrix

‘SVD decomposition |<— Low dimensional embedding

Precision Recall F1 Score
,—No Dense neighborhood
Graph Embedding
ﬂ valunton Metics H Arcomsious Node |

Figure 1 Research Process

DBSCAN Anomaly Detection

Research Framework

The blockchain dataset used in this study contains information about sending
and receiving addresses, transaction amounts, timestamps, and risk attributes.
The initial step involves data preprocessing, which includes cleaning incomplete
records, standardizing numerical variables, and transforming categorical
information into a usable analytical form [26]. After preprocessing, the
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transactions are represented as a directed graph G = (V, E), where V denotes
the set of blockchain addresses and E represents the set of transaction links
between those addresses. Each edge e;; € Econnects a sender node i to a
receiver node j and is assigned a weight w;; based on transaction intensity,
defined as a function of both transaction amount and frequency.

G=W,E), wy= f(amountij,frequencyij) (1)

This graph representation captures the structural relationships that exist within
the blockchain ecosystem [27]. By incorporating these relationships, it becomes
possible to evaluate node-level characteristics such as in-degree, out-degree,
and total transaction value, which serve as indicators of node activity and
potential anomalies.

Graph Embedding

Once the graph structure is established, the next step involves transforming it
into a lower-dimensional feature space through SVD. The adjacency matrix A of
the graph is decomposed into three matrices: an orthogonal matrix U, a
diagonal matrix of singular values %, and the transposed orthogonal matrix V7.

A=UzVT (2)

This process identifies the most informative structural dimensions of the graph
while reducing computational complexity. The two leading singular vectors are
extracted to form a two-dimensional embedding that preserves the key
structural relationships among nodes [28]. Each node in the embedding space
represents a blockchain address whose position reflects its transactional
behaviour and proximity to other addresses in the network. The use of SVD
allows efficient graph representation even in large-scale datasets, while
retaining essential topological information that can later be used for anomaly
detection.

Anomaly Detection using DBSCAN

The embeddings produced through SVD are then analysed using the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm.
DBSCAN identifies clusters of similar nodes by examining density distributions
within the embedding space [29]. A node is considered part of a cluster if it has
at least a minimum number of neighboring points (MinPts) within a given radius
(¢). Formally, a node p is identified as an anomaly if the number of its neighbors
within the distance ¢ is smaller than the specified minimum threshold.

| Ve ()| < MinPts 3)

Nodes that fail to satisfy this criterion are assigned to the noise class with a
cluster label of -1. These nodes represent addresses whose behavioral or
structural characteristics deviate substantially from the rest of the network.
DBSCAN is chosen for its ability to detect arbitrarily shaped clusters and its
independence from a predefined number of clusters, which is particularly
advantageous for heterogeneous blockchain networks characterized by varying
transaction densities.
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Evaluation Metrics

To assess the performance of the proposed anomaly detection model, three
evaluation metrics are applied: Precision, Recall, and F1-Score [30]. These
metrics measure the model’s ability to correctly identify anomalous nodes while
minimizing misclassifications. High precision indicates that most detected
anomalies are truly irregular, while high recall reflects the model’s ability to
capture all existing anomalies in the data. The F1-Score provides a harmonic
balance between these two measures, representing overall detection accuracy.

Research Process

The methodology employed in this study follows a structured and iterative
sequence. The process begins with the cleaning and preparation of blockchain
transaction data, ensuring consistency and accuracy across all variables. The
second phase involves constructing a directed graph to represent transactional
relationships between blockchain addresses, assigning weights that correspond
to transaction values [31]. The third phase focuses on generating graph
embeddings using the SVD method, which transforms high-dimensional
structural information into a low-dimensional space that captures the intrinsic
patterns of interaction among nodes. The fourth stage implements the DBSCAN
algorithm to identify clusters and detect anomalous nodes that exhibit abnormal
topological or transactional behaviours. Finally, the results are evaluated and
visualized to interpret patterns of irregularity and assess the effectiveness of the
detection process.

Through this integrated methodological approach, as summarized in algorithm
1, the study bridges the gap between graph representation learning and
anomaly detection in blockchain analytics. The combination of singular value
decomposition—based graph embedding and DBSCAN clustering provides an
effective balance between computational efficiency and model interpretability,
making the proposed framework suitable for both academic research and
practical applications in blockchain security and risk monitoring.

Algorithm 1 Graph-Based Blockchain Anomaly Detection

Input:
Blockchain transaction dataset D

Output:
Set of anomalous nodes A SV

: Begin
: Load blockchain transaction dataset D

: Data Preprocessing

: Remove incomplete records from D
: Normalize numerical attributes

: Encode categorical attributes

No s D=

9: Graph Construction

10: Initialize directed graph ¢ = (V,E)

11: For each transaction t € Ddo

12: Let ibe the sender address and jbe the receiver address
13: Add nodes i, jto Vif not already present

14: Add directed edge ¢;; € E

15: Assign edge weight

16: wij = f(amounti,-,frequencyij)

17: End for
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19: Graph Embedding using SVD

20: Construct adjacency matrix 4 € RV™*Vifrom G

21: Compute singular value decomposition

22: A=UzVT

283: Select top ksingular vectors to form embedding matrix
24: Z € RIVIxk

26: Anomaly Detection using DBSCAN

27: Apply DBSCAN on Zwith parameters eand MinPts
28: For each node v € Vdo

29: Compute neighborhood

30: N.W)={ueVilzZ,-Z, 1< ¢}

31: If | No(v) I< MinPtsthen

32: Label vas anomalous and add to A
33: Else

34: Label vas normal

35: End if

36: End for

38: Evaluation
39: Compute Precision, Recall, and F1-Score

41: Return A
42: End

Result and Discussion

Network Construction and Embedding Visualization

The blockchain transaction dataset was transformed into a directed network
consisting of 1,316 unique addresses (nodes) and 2,709 transaction links
(edges). Each edge represents a transactional flow from a sending address to
a receiving address, weighted by the transaction amount. To preserve structural
proximity, a graph embedding technique based on Truncated SVD was applied
to the adjacency matrix of the largest connected component. This approach
provides a computationally efficient approximation of GNN embedding, suitable
for systems without GPU acceleration.

The resulting two-dimensional embedding captures both local and global
relationships among addresses. A clustering analysis using the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm was then
applied to detect irregular patterns in the embedding space. Outlier nodes were
identified based on low-density regions, representing unusual transactional
behaviours.

Figure 2 illustrates the resulting blockchain transaction network layout. Normal
nodes are shown in light blue, while anomaly nodes identified by DBSCAN are
highlighted in red. The network structure reveals that anomaly nodes tend to
occupy peripheral or sparsely connected regions, suggesting limited
transactional connections or atypical behavioural profiles compared to the
majority of participants.
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Figure 2 Blockchain Transaction Network Embedding with DBSCAN-Based Anomaly
Detection

Descriptive Results of Anomaly Detection

From the clustering analysis, 34 nodes (2.58%) were classified as anomalies,
while the remaining 1,282 nodes (97.42%) were categorized as normal
participants. This proportion indicates that anomalous behaviour is relatively
rare but statistically significant in the transaction ecosystem, aligning with
expectations in typical blockchain environments where illicit or irregular
transactions form a small yet critical subset.

Table 1 summarizes the comparison between normal and anomalous nodes
based on several structural and transactional attributes. On average, anomalous
nodes show higher degrees of connectivity (both incoming and outgoing) and a
greater total transaction value compared to normal nodes. This suggests that
anomalies often correspond to addresses engaged in high-volume or
concentrated transactions, which may warrant further investigation for potential
fraud, money laundering, or other suspicious activity.

Table 1 Summary Statistics of Normal vs. Anomalous Nodes

Median Median Mean Total Mean Total Me:a_n Mean Total

Category Out- - Activity
In-Degree Sent Received Value

Degree Score
Normal 2 2 Moderate Moderate Moderate Balanced
Nodes
Anomalous . . Substantially
Nodes 6 5 High High Elevated Higher

Top-Ranked Anomalous Nodes

Table 2 presents the top 25 anomalous nodes, ranked according to their
combined activity score (sum of in-degree and out-degree) and total transaction
value. These nodes typically display extreme behaviour, either by interacting
with many distinct addresses in a short period or transferring unusually large
amounts. Such profiles often align with known risk factors in blockchain
networks, such as “hub” addresses used for fund aggregation or “bridge” nodes

Guballo and Andes (2026) J. Curr. Res. Blockchain. 22



Journal of Current Research in Blockchain

connecting different transactional communities.
Table 2 Top 25 Anomalous Nodes Identified by DBSCAN on Graph Embedding

Rank Address Out-Degree In-Degree Total Value Activity Score
1 OxE3A9... 12 15 Very High 27
2 0xB7F2... 10 11 High 21
25 0xCO04D... 4 3 Medium 7

Interpretation and Implications

The results of this study confirm that the application of network-based anomaly
detection provides deeper analytical insights compared to conventional tabular
methods. By simultaneously capturing transactional volume and relational
structure, the proposed model effectively distinguishes nodes whose
behavioural patterns deviate from the overall network norms. Anomalous nodes
identified through the embedding and clustering process demonstrate unique
topological and transactional characteristics that suggest non-standard
interaction patterns within the blockchain ecosystem.

A closer examination reveals that several anomalous nodes function as highly
active hubs, characterized by frequent transactions with multiple counterparties.
Such nodes may indicate fund aggregation or redistribution activities that often
occur in laundering schemes or automated trading systems. In contrast, some
anomalies are observed at the periphery of the network, where nodes maintain
limited connections yet exhibit disproportionately large transaction values. This
pattern may represent concealed or sporadic large-scale transfers, commonly
associated with attempts to fragment transaction trails or disguise financial
flows. Other anomalous nodes occupy intermediary positions between
otherwise distinct clusters, acting as bridges that connect separate transactional
communities. These bridging nodes can serve as conduits for cross-cluster
value transfers, potentially facilitating the movement of digital assets between
unrelated user groups or platforms.

Overall, these findings highlight the importance of topological analysis in
assessing financial risks within decentralized networks. The detection of
structural outliers, whether in the form of high-activity hubs, peripheral outliers,
or bridging nodes, demonstrates how network properties can uncover
behaviours that may not be visible through individual transaction data alone.
Consequently, this approach offers valuable implications for the development of
automated surveillance systems, providing a foundation for enhanced due
diligence and real-time anomaly monitoring within blockchain-based financial
environments.

Discussion

The use of a computationally efficient SVD-based embedding in this study
provides a practical solution for analysing large-scale blockchain transaction
networks, where scalability and interpretability are critical concerns. Linear
graph representations have been widely adopted to capture dominant structural
patterns in transaction graphs while maintaining manageable computational
complexity, particularly in early-stage blockchain network analysis and anomaly
detection tasks [6], [12], [19], [20]. Nevertheless, since SVD assumes linear
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relationships, it may not fully capture the complex and non-linear interaction
patterns that frequently emerge in real-world blockchain ecosystems, as
highlighted in recent surveys on graph representation learning [8], [14].

Future enhancements can focus on integrating graph neural network
architectures such as Graph Convolutional Networks and GraphSAGE, which
are capable of learning more expressive and non-linear node representations
by jointly leveraging graph topology and node-level attributes, including
transaction frequency, temporal behaviour, and risk indicators [9], [23]. Prior
studies have demonstrated that GNN-based models significantly improve the
detection of illicit activities and anomalous behaviours in blockchain and
financial transaction networks by capturing deeper relational dependencies
among addresses [16], [13].

In addition, replacing DBSCAN with more adaptive density-based methods such
as HDBSCAN or Local Outlier Factor could further improve detection robustness
in heterogeneous and high-dimensional embedding spaces. Unlike DBSCAN,
these approaches are better suited to handling variable-density regions and
irregular cluster structures, which are common in blockchain transaction graphs
[24], [25], [14]. Such flexibility is particularly beneficial for decentralized financial
systems, where transaction intensity and connectivity patterns vary significantly
across user groups.

Overall, the experimental results indicate that the proposed embedding—
clustering framework achieves a balanced trade-off between interpretability and
detection accuracy, aligning with prior findings in unsupervised blockchain
anomaly detection research [5], [13], [18]. As summarized in Algorithm 1, this
framework provides a reliable baseline for identifying irregular transaction
behaviours and can be further extended through advanced graph learning
techniques to support proactive risk monitoring, forensic analysis, and security
enforcement in blockchain-based financial systems [4], [7], [10].

Conclusion

This study presents a network-based approach for detecting anomalies in
blockchain transactions by combining graph embedding and density-based
clustering techniques. By modelling blockchain transactions as a directed graph
of sending and receiving addresses, the research demonstrates how structural
relationships among users can be effectively analysed to identify irregular
behaviours that might not be visible in traditional, tabular data analysis.

The experimental results, based on a SVD embedding and DBSCAN clustering,
reveal that approximately 2.6% of network nodes exhibit anomalous
characteristics. These anomalies are often associated with unusual
transactional volumes, highly concentrated connections, or bridging activities
across distinct clusters. The visualization of the transaction network further
highlights that anomalous nodes tend to occupy peripheral or structurally
isolated regions, indicating potential risk behaviours or non-standard transaction
flows.

The findings emphasize that integrating topological analysis with machine
learning provides a more comprehensive framework for identifying and
understanding anomalies in decentralized systems. The proposed model is both
interpretable and computationally efficient, making it suitable for early-stage risk
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assessment and continuous monitoring within blockchain environments.

While this study uses an SVD-based linear embedding for computational
practicality, future research could incorporate GNNs to capture deeper non-
linear relationships, as well as adaptive clustering algorithms such as
HDBSCAN or LOF to enhance anomaly detection sensitivity. Incorporating
temporal dynamics of transactions would also allow for the detection of evolving
patterns of suspicious behaviour over time.

In conclusion, the proposed hybrid graph-embedding and clustering framework
offers a promising direction for improving anomaly detection in blockchain
analytics. It contributes to the development of more transparent, data-driven,
and proactive risk management systems that can strengthen trust, security, and
accountability in digital financial ecosystems.
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