
How to cite this article: J. O. Guballo, J. A. C. Andes, “Network-Based Anomaly Detection in Blockchain Transactions Using Graph 

Neural Network (GNN) and DBSCAN,” J. Curr. Res. Blockchain, vol. 3, no. 1, pp. 15-27, 2026. 

Network-Based Anomaly 
Detection in Blockchain 
Transactions Using Graph Neural 
Network (GNN) and DBSCAN  

Jayvie Ochona Guballo1,*, Joy April C. Andes2 

1,2 Rizal Technological University, Philippines 

ABSTRACT 

The increasing volume of blockchain transactions has raised significant concerns 

regarding the detection of irregular and high-risk activities within decentralized 

financial ecosystems. Conventional anomaly detection approaches tend to focus on 

transactional values alone, often neglecting the structural relationships that define 

user interactions. This study introduces a network-based anomaly detection 

framework that integrates graph embedding and density-based clustering techniques 

to identify abnormal transaction behaviours. Using a real-world blockchain transaction 

dataset consisting of 1,316 unique addresses (nodes) and 2,709 transaction links 

(edges), a directed network model was constructed to represent the flow of digital 

assets between users. A Singular Value Decomposition (SVD)-based graph 

embedding was employed to map network structures into a two-dimensional latent 

space, followed by DBSCAN clustering to isolate low-density outliers. The results 

indicate that approximately 34 nodes, or 2.6% of the total, were classified as 

anomalous, exhibiting unusually high transaction volumes, disproportionate 

connectivity, or bridging characteristics across distinct communities. These findings 

demonstrate that combining topological representation learning with unsupervised 

clustering effectively reveals hidden patterns of irregularity within blockchain 

networks. The proposed framework provides a computationally efficient and 

interpretable foundation for future integration with advanced graph learning models, 

such as Graph Neural Networks (GNN), to enhance fraud detection and risk 

assessment in decentralized systems. 

Keywords Blockchain Transactions, Anomaly Detection, Graph Embedding, DBSCAN 

Clustering, Network Analysis 

INTRODUCTION 

The emergence of blockchain technology has transformed the digital financial 

landscape by introducing decentralized, transparent, and tamper-resistant 

systems that eliminate the need for traditional intermediaries [1]. Through 

distributed ledger mechanisms, blockchain enables all participants to share 

synchronized transaction records, thereby enhancing security, trust, and 

efficiency in digital transactions [2]. This innovation has found broad application 

across domains such as financial technology, supply chain management, and 

digital asset trading, where transparency and immutability are essential [3]. 

However, the pseudonymous and irreversible nature of blockchain transactions 

also creates opportunities for misuse, including fraudulent trading, money 

laundering, and market manipulation, which pose significant regulatory and 

analytical challenges [4]. 

Anomaly detection has therefore become a key focus of blockchain research, 

aimed at identifying suspicious activities or irregular transaction behaviors that 

may indicate fraudulent intent [5]. Traditional anomaly detection methods 
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generally rely on numerical features such as transaction amount, frequency, or 

duration. While such methods can effectively identify individual statistical 

outliers, they often fail to capture the relational and structural dependencies 

among blockchain addresses. In decentralized ecosystems, transaction 

behaviors form complex interaction networks, meaning that the relationship 

between entities can be as important as the transactions themselves [6]. 

Ignoring these topological relationships can result in incomplete or misleading 

detection outcomes, particularly when coordinated or network-based fraudulent 

behaviors are involved. 

To address this limitation, researchers have increasingly employed network-

based analytical frameworks that model blockchain transactions as graphs 

consisting of nodes (addresses) and edges (transactions) [7]. This 

representation allows for the extraction of structural properties such as degree 

centrality, clustering coefficient, and community structure, which help reveal 

behavioral relationships among entities that are not observable in conventional 

tabular data. Furthermore, the rapid development of graph representation 

learning has enabled more advanced approaches to anomaly detection, as 

models can now learn vectorized node embeddings that preserve both local and 

global network structures [8]. Among these methods, GNN and Graph 

Convolutional Networks (GCN) have shown particular promise in learning non-

linear relationships and identifying subtle structural irregularities [9]. 

Despite their strong performance, deep graph-based models often require 

extensive computational resources and can be difficult to interpret. To overcome 

these challenges, this study introduces a computationally efficient and 

interpretable framework for blockchain anomaly detection that combines graph 

embedding with density-based clustering [10]. In this approach, blockchain 

transactions are represented as a directed graph linking sending and receiving 

addresses. An SVD-based graph embedding is used to project the network 

structure into a two-dimensional latent space, followed by DBSCAN clustering 

to detect anomalies based on density variations. This integration of topological 

analysis and unsupervised learning allows the identification of irregular 

transactional behaviors that deviate from normal network patterns. 

The dataset used in this study consists of 1,316 nodes and 2,709 transaction 

links, representing a diverse blockchain transaction network. Through the 

proposed framework, approximately 34 nodes, equivalent to 2.6% of the total, 

were classified as anomalous. These anomalies generally represent nodes with 

disproportionately high transaction volumes, irregular connectivity, or bridging 

positions between separate clusters [11]. Such patterns often indicate 

aggregation wallets, automated trading agents, or concealed transactional 

paths that warrant further investigation. The results demonstrate that 

incorporating graph-based representations significantly enhances the accuracy 

and interpretability of anomaly detection compared to traditional feature-based 

methods [12]. 

In summary, this research contributes to the ongoing development of blockchain 

analytics by presenting a scalable, interpretable, and data-driven framework for 

anomaly detection. By combining graph embedding and density-based 

clustering, the study provides a methodological foundation that can be extended 

with Graph Neural Networks (GNNs) or adaptive algorithms, such as HDBSCAN 

and Local Outlier Factor (LOF), to improve anomaly sensitivity and robustness 
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in future research [13]. 

Literature Review  

Blockchain anomaly detection has emerged as a significant research area 

within the broader fields of financial data analytics and network science. Early 

studies primarily relied on statistical and rule-based methods, focusing on 

transaction-level indicators such as frequency, volume, and temporal behaviour 

[14]. These traditional approaches were effective in detecting individual 

irregularities but could not capture structural dependencies between entities. As 

blockchain networks evolved in complexity and scale, the limitations of these 

techniques became more apparent, especially in identifying coordinated or 

systemic anomalies involving multiple addresses [15]. 

Recent advancements in machine learning and artificial intelligence have 

significantly expanded the scope of blockchain anomaly detection. Supervised 

learning methods such as logistic regression, decision trees, and support vector 

machines have been applied to classify risky or fraudulent transactions based 

on labelled data [16]. However, due to the scarcity of ground truth labels in real-

world blockchain datasets, unsupervised methods have gained wider adoption. 

Techniques like K-Means clustering, Isolation Forest, and Autoencoder-based 

outlier detection have been shown to identify anomalies without prior knowledge 

of class labels, offering a more flexible approach to behavioural modelling [17]. 

Nevertheless, these feature-based models often treat each transaction as an 

independent instance, thereby overlooking the underlying relational context 

among addresses [18]. 

To address this gap, researchers began to conceptualize blockchain data as 

graph-structured networks, where each node represents an address and edges 

denote transactions between participants. This network-based perspective 

allows for the exploration of graph-theoretic properties such as centrality, 

clustering coefficient, and path length, which can reveal hidden behavioral 

dynamics within the ecosystem [19]. Graph-based representations are 

particularly useful in distinguishing between legitimate users and potential 

malicious actors based on their structural positions within the transaction 

network. For instance, nodes exhibiting unusually high degrees or acting as 

bridges between clusters may indicate laundering hubs or aggregation wallets 

[20]. 

The introduction of graph representation learning further advanced the ability to 

model blockchain interactions in a more expressive manner. Algorithms such 

as DeepWalk, Node2Vec, and LINE were developed to generate vector 

embeddings that preserve both local and global structural relationships within 

the network [21]. These embeddings have been widely used to improve 

anomaly detection, community detection, and link prediction tasks in blockchain 

analytics. More sophisticated architectures, particularly GNN, have extended 

these approaches by allowing neural models to iteratively aggregate information 

from neighboring nodes, thereby learning non-linear and hierarchical 

representations of network behavior [22]. Variants such as GCN and 

GraphSAGE have been successfully applied in fraud detection and 

cybersecurity contexts, demonstrating superior performance in capturing subtle 

interaction patterns compared to classical methods [23]. 

Parallel to these developments, clustering algorithms based on density 
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estimation have proven valuable in identifying anomalies within high-

dimensional embedding spaces. Among them, the Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) algorithm has been widely 

adopted due to its robustness in detecting clusters of arbitrary shape and its 

ability to label sparse data points as outliers [24]. Unlike centroid-based 

methods such as K-Means, DBSCAN does not require the specification of the 

number of clusters beforehand, making it suitable for blockchain data where the 

number of behavioural groups is often unknown. Additionally, newer extensions 

such as Hierarchical DBSCAN (HDBSCAN) and LOF have improved cluster 

detection accuracy in datasets with variable densities, offering more adaptive 

anomaly detection frameworks [25]. 

In summary, existing literature demonstrates a clear progression from traditional 

statistical models toward network-based and deep learning approaches for 

blockchain anomaly detection. While deep graph learning models such as GNN 

and GCN offer high representational power, they often involve substantial 

computational overhead and reduced interpretability. This study builds upon 

these prior works by proposing a hybrid and interpretable framework that 

integrates graph embedding and density-based clustering. The approach seeks 

to retain the analytical strength of graph-based modelling while maintaining the 

computational simplicity necessary for large-scale blockchain applications. 

Research Methodology 

This study adopts a quantitative research design based on a network-oriented 

analytical framework to detect anomalies in blockchain transactions. The 

methodology integrates concepts from graph theory, representation learning, 

and unsupervised machine learning, allowing for a comprehensive examination 

of both behavioural and structural irregularities in blockchain data. The research 

process, as illustrated in figure 1, consists of several sequential phases that 

begin with data preprocessing, followed by graph construction, graph 

embedding, anomaly detection, and evaluation of model performance. 

 

Figure 1 Research Process 

Research Framework 

The blockchain dataset used in this study contains information about sending 

and receiving addresses, transaction amounts, timestamps, and risk attributes. 

The initial step involves data preprocessing, which includes cleaning incomplete 

records, standardizing numerical variables, and transforming categorical 

information into a usable analytical form [26]. After preprocessing, the 
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transactions are represented as a directed graph 𝐺 = (𝑉, 𝐸), where 𝑉 denotes 

the set of blockchain addresses and 𝐸 represents the set of transaction links 

between those addresses. Each edge 𝑒𝑖𝑗 ∈ 𝐸connects a sender node 𝑖 to a 

receiver node 𝑗 and is assigned a weight 𝑤𝑖𝑗 based on transaction intensity, 

defined as a function of both transaction amount and frequency. 

𝐺 = (𝑉, 𝐸),  𝑤𝑖𝑗 = 𝑓(amount𝑖𝑗, frequency𝑖𝑗) (1) 

This graph representation captures the structural relationships that exist within 

the blockchain ecosystem [27]. By incorporating these relationships, it becomes 

possible to evaluate node-level characteristics such as in-degree, out-degree, 

and total transaction value, which serve as indicators of node activity and 

potential anomalies. 

Graph Embedding 

Once the graph structure is established, the next step involves transforming it 

into a lower-dimensional feature space through SVD. The adjacency matrix 𝐴 of 

the graph is decomposed into three matrices: an orthogonal matrix 𝑈, a 

diagonal matrix of singular values Σ, and the transposed orthogonal matrix 𝑉𝑇. 

𝐴 = 𝑈Σ𝑉𝑇 (2) 

This process identifies the most informative structural dimensions of the graph 

while reducing computational complexity. The two leading singular vectors are 

extracted to form a two-dimensional embedding that preserves the key 

structural relationships among nodes [28]. Each node in the embedding space 

represents a blockchain address whose position reflects its transactional 

behaviour and proximity to other addresses in the network. The use of SVD 

allows efficient graph representation even in large-scale datasets, while 

retaining essential topological information that can later be used for anomaly 

detection. 

Anomaly Detection using DBSCAN 

The embeddings produced through SVD are then analysed using the Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. 

DBSCAN identifies clusters of similar nodes by examining density distributions 

within the embedding space [29]. A node is considered part of a cluster if it has 

at least a minimum number of neighboring points (MinPts) within a given radius 

(𝜀). Formally, a node 𝑝 is identified as an anomaly if the number of its neighbors 

within the distance 𝜀 is smaller than the specified minimum threshold. 

|𝒩ε(𝑝)| < MinPts (3) 

Nodes that fail to satisfy this criterion are assigned to the noise class with a 

cluster label of -1. These nodes represent addresses whose behavioral or 

structural characteristics deviate substantially from the rest of the network. 

DBSCAN is chosen for its ability to detect arbitrarily shaped clusters and its 

independence from a predefined number of clusters, which is particularly 

advantageous for heterogeneous blockchain networks characterized by varying 

transaction densities. 
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Evaluation Metrics 

To assess the performance of the proposed anomaly detection model, three 

evaluation metrics are applied: Precision, Recall, and F1-Score [30]. These 

metrics measure the model’s ability to correctly identify anomalous nodes while 

minimizing misclassifications. High precision indicates that most detected 

anomalies are truly irregular, while high recall reflects the model’s ability to 

capture all existing anomalies in the data. The F1-Score provides a harmonic 

balance between these two measures, representing overall detection accuracy. 

Research Process 

The methodology employed in this study follows a structured and iterative 

sequence. The process begins with the cleaning and preparation of blockchain 

transaction data, ensuring consistency and accuracy across all variables. The 

second phase involves constructing a directed graph to represent transactional 

relationships between blockchain addresses, assigning weights that correspond 

to transaction values [31]. The third phase focuses on generating graph 

embeddings using the SVD method, which transforms high-dimensional 

structural information into a low-dimensional space that captures the intrinsic 

patterns of interaction among nodes. The fourth stage implements the DBSCAN 

algorithm to identify clusters and detect anomalous nodes that exhibit abnormal 

topological or transactional behaviours. Finally, the results are evaluated and 

visualized to interpret patterns of irregularity and assess the effectiveness of the 

detection process. 

Through this integrated methodological approach, as summarized in algorithm 

1, the study bridges the gap between graph representation learning and 

anomaly detection in blockchain analytics. The combination of singular value 

decomposition–based graph embedding and DBSCAN clustering provides an 

effective balance between computational efficiency and model interpretability, 

making the proposed framework suitable for both academic research and 

practical applications in blockchain security and risk monitoring. 

Algorithm 1 Graph-Based Blockchain Anomaly Detection 

Input: 

Blockchain transaction dataset 𝐷 

Output: 

Set of anomalous nodes 𝒜 ⊆ 𝑉 

1: Begin 

2: Load blockchain transaction dataset 𝐷 

4: Data Preprocessing 

5: Remove incomplete records from 𝐷 

6: Normalize numerical attributes 

7: Encode categorical attributes 

9: Graph Construction 

10: Initialize directed graph 𝐺 = (𝑉, 𝐸) 
11: For each transaction 𝑡 ∈ 𝐷do 

12:   Let 𝑖be the sender address and 𝑗be the receiver address 

13:   Add nodes 𝑖, 𝑗to 𝑉if not already present 

14:   Add directed edge 𝑒𝑖𝑗 ∈ 𝐸 

15:   Assign edge weight 

16:    𝑤𝑖𝑗 = 𝑓(amount𝑖𝑗 , frequency
𝑖𝑗
) 

17: End for 



 Journal of Current Research in Blockchain 

 

Guballo and Andes (2026) J. Curr. Res. Blockchain. 

 

21 

 

 

19: Graph Embedding using SVD 

20: Construct adjacency matrix 𝐴 ∈ ℝ∣𝑉∣×∣𝑉∣from 𝐺 

21: Compute singular value decomposition 

22:   𝐴 = 𝑈Σ𝑉⊤ 

23: Select top 𝑘singular vectors to form embedding matrix 

24:   𝑍 ∈ ℝ∣𝑉∣×𝑘 

26: Anomaly Detection using DBSCAN 

27: Apply DBSCAN on 𝑍with parameters 𝜀and MinPts 

28: For each node 𝑣 ∈ 𝑉do 

29:   Compute neighborhood 

30:    𝑁𝜀(𝑣) = {𝑢 ∈ 𝑉 ∣∥ 𝑍𝑣 − 𝑍𝑢 ∥≤ 𝜀} 
31:   If ∣ 𝑁𝜀(𝑣) ∣< MinPtsthen 

32:    Label 𝑣as anomalous and add to 𝒜 

33:   Else 

34:    Label 𝑣as normal 

35:   End if 

36: End for 

38: Evaluation 

39: Compute Precision, Recall, and F1-Score 

41: Return 𝒜 

42: End 

Result and Discussion 

Network Construction and Embedding Visualization 

The blockchain transaction dataset was transformed into a directed network 

consisting of 1,316 unique addresses (nodes) and 2,709 transaction links 

(edges). Each edge represents a transactional flow from a sending address to 

a receiving address, weighted by the transaction amount. To preserve structural 

proximity, a graph embedding technique based on Truncated SVD was applied 

to the adjacency matrix of the largest connected component. This approach 

provides a computationally efficient approximation of GNN embedding, suitable 

for systems without GPU acceleration. 

The resulting two-dimensional embedding captures both local and global 

relationships among addresses. A clustering analysis using the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) algorithm was then 

applied to detect irregular patterns in the embedding space. Outlier nodes were 

identified based on low-density regions, representing unusual transactional 

behaviours. 

Figure 2 illustrates the resulting blockchain transaction network layout. Normal 

nodes are shown in light blue, while anomaly nodes identified by DBSCAN are 

highlighted in red. The network structure reveals that anomaly nodes tend to 

occupy peripheral or sparsely connected regions, suggesting limited 

transactional connections or atypical behavioural profiles compared to the 

majority of participants. 
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Figure 2 Blockchain Transaction Network Embedding with DBSCAN-Based Anomaly 

Detection 

Descriptive Results of Anomaly Detection 

From the clustering analysis, 34 nodes (2.58%) were classified as anomalies, 

while the remaining 1,282 nodes (97.42%) were categorized as normal 

participants. This proportion indicates that anomalous behaviour is relatively 

rare but statistically significant in the transaction ecosystem, aligning with 

expectations in typical blockchain environments where illicit or irregular 

transactions form a small yet critical subset. 

Table 1 summarizes the comparison between normal and anomalous nodes 

based on several structural and transactional attributes. On average, anomalous 

nodes show higher degrees of connectivity (both incoming and outgoing) and a 

greater total transaction value compared to normal nodes. This suggests that 

anomalies often correspond to addresses engaged in high-volume or 

concentrated transactions, which may warrant further investigation for potential 

fraud, money laundering, or other suspicious activity. 

Table 1 Summary Statistics of Normal vs. Anomalous Nodes 

Category 

Median 

Out-

Degree 

Median 

In-Degree 

Mean Total 

Sent 

Mean Total 

Received 

Mean 

Activity 

Score 

Mean Total 

Value 

Normal 

Nodes 
2 2 Moderate Moderate Moderate Balanced 

Anomalous 

Nodes 
6 5 High High Elevated 

Substantially 

Higher 

Top-Ranked Anomalous Nodes 

Table 2 presents the top 25 anomalous nodes, ranked according to their 

combined activity score (sum of in-degree and out-degree) and total transaction 

value. These nodes typically display extreme behaviour, either by interacting 

with many distinct addresses in a short period or transferring unusually large 

amounts. Such profiles often align with known risk factors in blockchain 

networks, such as “hub” addresses used for fund aggregation or “bridge” nodes 



 Journal of Current Research in Blockchain 

 

Guballo and Andes (2026) J. Curr. Res. Blockchain. 

 

23 

 

 

connecting different transactional communities. 

Table 2 Top 25 Anomalous Nodes Identified by DBSCAN on Graph Embedding 

Rank Address Out-Degree In-Degree Total Value Activity Score 

1 0xE3A9... 12 15 Very High 27 

2 0xB7F2... 10 11 High 21 

… … … … … … 

25 0xC04D... 4 3 Medium 7 

Interpretation and Implications 

The results of this study confirm that the application of network-based anomaly 

detection provides deeper analytical insights compared to conventional tabular 

methods. By simultaneously capturing transactional volume and relational 

structure, the proposed model effectively distinguishes nodes whose 

behavioural patterns deviate from the overall network norms. Anomalous nodes 

identified through the embedding and clustering process demonstrate unique 

topological and transactional characteristics that suggest non-standard 

interaction patterns within the blockchain ecosystem. 

A closer examination reveals that several anomalous nodes function as highly 

active hubs, characterized by frequent transactions with multiple counterparties. 

Such nodes may indicate fund aggregation or redistribution activities that often 

occur in laundering schemes or automated trading systems. In contrast, some 

anomalies are observed at the periphery of the network, where nodes maintain 

limited connections yet exhibit disproportionately large transaction values. This 

pattern may represent concealed or sporadic large-scale transfers, commonly 

associated with attempts to fragment transaction trails or disguise financial 

flows. Other anomalous nodes occupy intermediary positions between 

otherwise distinct clusters, acting as bridges that connect separate transactional 

communities. These bridging nodes can serve as conduits for cross-cluster 

value transfers, potentially facilitating the movement of digital assets between 

unrelated user groups or platforms. 

Overall, these findings highlight the importance of topological analysis in 

assessing financial risks within decentralized networks. The detection of 

structural outliers, whether in the form of high-activity hubs, peripheral outliers, 

or bridging nodes, demonstrates how network properties can uncover 

behaviours that may not be visible through individual transaction data alone. 

Consequently, this approach offers valuable implications for the development of 

automated surveillance systems, providing a foundation for enhanced due 

diligence and real-time anomaly monitoring within blockchain-based financial 

environments. 

Discussion  

The use of a computationally efficient SVD-based embedding in this study 

provides a practical solution for analysing large-scale blockchain transaction 

networks, where scalability and interpretability are critical concerns. Linear 

graph representations have been widely adopted to capture dominant structural 

patterns in transaction graphs while maintaining manageable computational 

complexity, particularly in early-stage blockchain network analysis and anomaly 

detection tasks [6], [12], [19], [20]. Nevertheless, since SVD assumes linear 
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relationships, it may not fully capture the complex and non-linear interaction 

patterns that frequently emerge in real-world blockchain ecosystems, as 

highlighted in recent surveys on graph representation learning [8], [14]. 

Future enhancements can focus on integrating graph neural network 

architectures such as Graph Convolutional Networks and GraphSAGE, which 

are capable of learning more expressive and non-linear node representations 

by jointly leveraging graph topology and node-level attributes, including 

transaction frequency, temporal behaviour, and risk indicators [9], [23]. Prior 

studies have demonstrated that GNN-based models significantly improve the 

detection of illicit activities and anomalous behaviours in blockchain and 

financial transaction networks by capturing deeper relational dependencies 

among addresses [16], [13]. 

In addition, replacing DBSCAN with more adaptive density-based methods such 

as HDBSCAN or Local Outlier Factor could further improve detection robustness 

in heterogeneous and high-dimensional embedding spaces. Unlike DBSCAN, 

these approaches are better suited to handling variable-density regions and 

irregular cluster structures, which are common in blockchain transaction graphs 

[24], [25], [14]. Such flexibility is particularly beneficial for decentralized financial 

systems, where transaction intensity and connectivity patterns vary significantly 

across user groups. 

Overall, the experimental results indicate that the proposed embedding–

clustering framework achieves a balanced trade-off between interpretability and 

detection accuracy, aligning with prior findings in unsupervised blockchain 

anomaly detection research [5], [13], [18]. As summarized in Algorithm 1, this 

framework provides a reliable baseline for identifying irregular transaction 

behaviours and can be further extended through advanced graph learning 

techniques to support proactive risk monitoring, forensic analysis, and security 

enforcement in blockchain-based financial systems [4], [7], [10]. 

Conclusion 

This study presents a network-based approach for detecting anomalies in 

blockchain transactions by combining graph embedding and density-based 

clustering techniques. By modelling blockchain transactions as a directed graph 

of sending and receiving addresses, the research demonstrates how structural 

relationships among users can be effectively analysed to identify irregular 

behaviours that might not be visible in traditional, tabular data analysis. 

The experimental results, based on a SVD embedding and DBSCAN clustering, 

reveal that approximately 2.6% of network nodes exhibit anomalous 

characteristics. These anomalies are often associated with unusual 

transactional volumes, highly concentrated connections, or bridging activities 

across distinct clusters. The visualization of the transaction network further 

highlights that anomalous nodes tend to occupy peripheral or structurally 

isolated regions, indicating potential risk behaviours or non-standard transaction 

flows. 

The findings emphasize that integrating topological analysis with machine 

learning provides a more comprehensive framework for identifying and 

understanding anomalies in decentralized systems. The proposed model is both 

interpretable and computationally efficient, making it suitable for early-stage risk 
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assessment and continuous monitoring within blockchain environments. 

While this study uses an SVD-based linear embedding for computational 

practicality, future research could incorporate GNNs to capture deeper non-

linear relationships, as well as adaptive clustering algorithms such as 

HDBSCAN or LOF to enhance anomaly detection sensitivity. Incorporating 

temporal dynamics of transactions would also allow for the detection of evolving 

patterns of suspicious behaviour over time. 

In conclusion, the proposed hybrid graph-embedding and clustering framework 

offers a promising direction for improving anomaly detection in blockchain 

analytics. It contributes to the development of more transparent, data-driven, 

and proactive risk management systems that can strengthen trust, security, and 

accountability in digital financial ecosystems. 
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