Bright)

Publisher

Submitted: 2 April 2025
Accepted: 15 May 2025
Published: 7 February 2026

Corresponding author
Untung Raharija,
untung@raharja.info

Additional Information and
Declarations can be found on
page 43

DOI: 10.47738/jcrb.v3i1.56

@ Copyright
2026 Raharja and Aini

Distributed under
Creative Commons CC-BY 4.0

Enhancing Blockchain Security
Through Smart Contract
Vulnerability Classification Using
BiLSTM and Attention Mechanism

Untung Raharja® @, Qurotul Aini?

2Faculty of Science and Technology, University of Raharja, Tangerang 1511, Indonesia

ABSTRACT

The rapid adoption of blockchain technology has intensified the need for robust smart
contract security mechanisms. However, traditional rule-based or static analysis tools
often fail to detect context-dependent vulnerabilities embedded in complex contract
logic. This study proposes a deep learning framework for automated smart contract
vulnerability classification using a Bidirectional Long Short-Term Memory (BiLSTM)
network integrated with an Attention Mechanism. The model was trained and
evaluated on the SC_Vuln_8label.csv dataset, comprising 12,520 labelled Solidity
smart contracts categorized into eight distinct vulnerability types, including Re-
entrancy, Integer Overflow, and Short Address Attack. Through bidirectional
contextual learning and attention-based feature weighting, the proposed model
achieved 93.7% test accuracy, 0.93 precision, and a macro F1-score of 0.92,
outperforming baseline models such as CNN, GRU, and standard LSTM by up to 5.3
percentage points. Attention heatmap analysis further revealed the model’s
interpretability by highlighting vulnerability-prone code segments (e.g., call.value,
send(), and withdraw() functions) consistent with expert-identified risk indicators.
These results demonstrate that the BiLSTM + Attention framework not only enhances
vulnerability detection accuracy but also provides transparent and explainable
reasoning, offering a reliable foundation for Al-assisted smart contract auditing
systems in blockchain security.

Keywords Blockchain Security, Smart Contract Vulnerability Detection, BILSTM, Attention
Mechanism, Deep Learning

INTRODUCTION

Blockchain technology has emerged as a foundational infrastructure for
decentralized digital systems by enabling transparent, immutable, and trustless
transactions without reliance on centralized authorities [1]. One of the most
significant innovations enabled by blockchain is the smart contract, which refers
to a self executing program deployed on blockchain platforms such as Ethereum
that automatically enforces predefined contractual rules once specified
conditions are satisfied [2]. Smart contracts have gained widespread adoption
across domains such as decentralized finance, supply chain management, and
digital asset governance due to their potential to reduce operational costs and
eliminate intermediaries. Despite these advantages, smart contracts introduce
critical security risks that primarily stem from their immutable nature [3]. Once
deployed, smart contracts cannot be modified or patched [4], and any hidden
vulnerability may result in irreversible financial losses, system disruptions, or
large scale exploitation [5]. Well known incidents such as the DAO attack have
demonstrated the severe consequences of vulnerabilities in smart contract code
and have emphasized the importance of effective vulnerability detection
mechanisms before deployment [6].

How to cite this article: U. Raharja and Q. Aini, “Enhancing Blockchain Security Through Smart Contract Vulnerability Classification
Using BiLSTM and Attention Mechanism,” J. Curr. Res. Blockchain, vol. 3, no. 1, pp. 28-45, 2026.

https://orcid.org/0000-0002-2166-2412
https://orcid.org/0000-0002-7546-5721
https://doi.org/10.47738/jcrb.v3i1.56
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/

Journal of Current Research in Blockchain

To address these security challenges, various smart contract auditing
techniques have been proposed, including manual code inspection, symbolic
execution, and static analysis tools such as Oyente, Mythril, and Slither [7].
These approaches constitute the foundation of early smart contract security
analysis and remain widely used in practice. However, they exhibit inherent
limitations, particularly in terms of high false positive rates, limited scalability,
and insufficient capability to capture context dependent vulnerabilities that arise
from complex interactions across multiple functions or execution paths [8]. As
smart contracts become increasingly complex and modular, these rule based
and heuristic driven methods struggle to model deeper semantic and structural
dependencies in Solidity programs, which significantly constrains their
effectiveness in real world scenarios [9].

Recent advances in deep learning and Natural Language Processing have
reshaped the state of the art in automated code analysis by enabling data driven
models to learn representations of source code as token sequences analogous
to natural language [10]. This paradigm has facilitated the application of neural
architectures such as Convolutional Neural Networks, Recurrent Neural
Networks, Long Short Term Memory networks, and Transformer based models
for smart contract vulnerability detection and program understanding tasks [11].
Although these approaches have demonstrated improved generalization
performance compared to traditional static analysis tools, several critical
challenges remain unresolved. In particular, many existing models rely on
unidirectional sequence modeling, which limits their ability to capture
bidirectional contextual dependencies where the semantics of a code statement
depend on both preceding and subsequent elements. Furthermore, a significant
portion of high performance deep learning based approaches operate as black
boxes, providing limited interpretability and offering minimal insight into which
specific code components contribute to vulnerability predictions. This lack of
transparency poses a substantial barrier to adoption in blockchain security
auditing, where explainability and trust are essential for practical deployment by
developers and auditors [12].

Despite the progress achieved by recent learning based approaches, a clear
research gap remains between detection accuracy and practical usability.
Existing state of the art solutions rarely provide interpretable explanations or
vulnerability localization capabilities that can support human centered auditing
workflows. Moreover, the majority of prior studies do not explicitly address the
challenge of modeling bidirectional semantic dependencies inherent in Solidity
code, which are crucial for accurately identifying context sensitive
vulnerabilities.

Motivated by these limitations, this study proposes an automated and
explainable smart contract vulnerability detection framework based on a
Bidirectional Long Short Term Memory network integrated with an attention
mechanism. The proposed framework jointly models forward and backward
contextual dependencies within Solidity code sequences, enabling a more
comprehensive representation of semantic relationships across multiple lines
and functions. In addition, the attention mechanism enhances interpretability by
assigning importance weights to vulnerability relevant code tokens, thereby
providing transparent and human understandable explanations for model
predictions. By integrating bidirectional sequence modeling with token level

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 29

Journal of Current Research in Blockchain

attention, this work advances the state of the art in smart contract vulnerability
detection by addressing both performance and explainability requirements.

In summary, this research contributes an explainable deep learning based
auditing framework that bridges the gap between automated vulnerability
detection and practical security analysis. By capturing bidirectional contextual
information and highlighting vulnerability indicative code patterns, the proposed
approach enhances the reliability, transparency, and trustworthiness of Al
assisted smart contract security systems and supports the secure development
of blockchain based applications.

Literature Review

The security of blockchain based applications has become an increasingly
important research area as smart contracts are widely used to automate
financial transactions, decentralized governance, and digital asset
management. Despite their potential to remove intermediaries and improve
transparency, smart contracts remain highly susceptible to programming errors,
design flaws, and logical inconsistencies that can lead to severe economic
losses. Numerous large scale security incidents, including the DAO exploit in
2016, the Parity wallet vulnerability in 2017, and multiple decentralized finance
attacks reported between 2020 and 2023, have demonstrated the critical need
for effective vulnerability detection and prevention mechanisms in smart
contracts [13],[14]. As a result, research efforts in this field have evolved from
traditional static and symbolic analysis techniques toward learning based and
hybrid artificial intelligence driven approaches aimed at improving accuracy,
scalability, and interpretability.

Early studies primarily focused on rule based and static analysis methods for
smart contract security assessment. Symbolic execution based tools were
developed to detect common vulnerability patterns such as reentrancy,
timestamp dependency, and transaction ordering dependence by exploring
feasible execution paths of smart contract code [15]. Subsequent approaches
extended symbolic analysis to identify unsafe contract behaviors related to
unauthorized fund transfers, improper self destruction, and unbounded
resource consumption [16]. Static analysis frameworks were also introduced to
analyze Solidity source code or Ethereum bytecode and identify data flow and
control flow vulnerabilities at a higher level of abstraction [17],[18]. Although
these tools laid the foundation for automated smart contract auditing and remain
widely adopted, they suffer from several inherent limitations. In particular, rule
based systems often generate a large number of false positives, struggle to
scale to complex contracts, and exhibit limited capability in detecting inter
procedural vulnerabilities that span multiple functions or execution contexts.
Moreover, their reliance on predefined rules and patterns restricts adaptability
to novel or obfuscated attack strategies, motivating the exploration of data
driven alternatives.

To overcome the rigidity of rule based analysis, subsequent research introduced
machine learning based techniques to automate vulnerability detection. These
approaches typically relied on manually engineered features extracted from
smart contract source code or opcode sequences, which were then used to train
classical classifiers such as Support Vector Machines or ensemble learning
models [19],[20]. By learning decision boundaries from labeled data, these

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 30

Journal of Current Research in Blockchain

methods reduced reliance on expert crafted rules and improved detection
automation. However, their dependence on handcrafted features limited their
generalization capability, as feature selection often introduced bias and failed
to capture the complex semantic relationships inherent in smart contract logic.
In addition, many of these approaches struggled to adapt to previously unseen
contract structures and evolving vulnerability patterns.

Recent advances in deep learning have significantly influenced the state of the
art in smart contract vulnerability detection by enabling models to learn
representations directly from raw code without manual feature engineering.
Recurrent neural network based architectures were proposed to model
sequential dependencies in opcode or tokenized source code, demonstrating
improved performance in identifying vulnerabilities such as reentrancy and
arithmetic errors [21],[22]. Convolutional neural networks were also explored to
capture local syntactic patterns in smart contract code by treating token
sequences as spatial features, achieving competitive results in vulnerability
classification tasks [23],[24]. Despite these advances, both convolution based
and unidirectional recurrent models exhibit limitations in capturing long range
dependencies and bidirectional contextual information, where the interpretation
of a statement may depend on code that appears later in the sequence.

To address these shortcomings, more recent studies have incorporated
Bidirectional Long Short Term Memory networks and attention mechanisms to
enhance both contextual understanding and model interpretability. Bidirectional
architectures enable the simultaneous modeling of forward and backward
dependencies, allowing deeper comprehension of control flow and data flow
relationships within smart contracts [25]. Attention mechanisms further improve
performance by dynamically assigning higher importance to vulnerability
relevant tokens, thereby enabling the model to focus on semantically significant
parts of the code [26]. These approaches have demonstrated that combining
bidirectional sequence modeling with attention not only improves detection
accuracy but also provides interpretable insights into the model decision making
process, which is essential for practical adoption in security auditing contexts
[27].

Building upon these developments, the present study proposes a BiLSTM with
Attention framework specifically designed for multi class smart contract
vulnerability classification using the SC_Vuln_8label.csv dataset. Unlike many
existing studies that focus on binary classification or a limited subset of
vulnerabilities, this work addresses eight major vulnerability categories
simultaneously, enabling a more comprehensive evaluation of model
generalization across diverse attack types. In addition to improving detection
capability, the proposed framework emphasizes explainability by highlighting
vulnerability indicative code tokens, thereby narrowing the gap between
automated deep learning based detection and human centered security
auditing. This research aligns with the growing emphasis on Explainable
Artificial Intelligence in blockchain security and contributes toward the
development of transparent, interpretable, and trustworthy vulnerability
detection systems for secure blockchain ecosystems.

Methods
This study adopts a quantitative deep learning approach using a BiLSTM

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 31

Journal of Current Research in Blockchain

network integrated with an Attention Mechanism to classify vulnerabilities in
Solidity-based smart contracts. The overall analytical workflow is illustrated in
figure 1. Research Steps, which outlines the five main stages of the research
process: data preprocessing, tokenization and embedding, BiLSTM sequence
modelling, attention-based weighting, and performance evaluation. Each stage
is designed to ensure that the model can effectively capture both syntactic and
semantic dependencies within Solidity code while maintaining interpretability
through attention visualization.

Input Solidity Dataset /— Preprocessing and Tokenization

YedNo
‘e

BILSTM Sequence Modeling |<—| Word2Vec Embedding F Padding or Truncation to 500
Yes
Attention Mechanism H Softmax CI H Adam ‘

No

Model Evaluation Predicted Vulnerability Class @

Figure 1 Research Steps

The experiment employed the SC_Vuln_8label.csv dataset, containing 12,520
labelled Solidity smart contracts distributed across eight vulnerability types: Re-
entrancy (RE), Timestamp Dependency (TD), Integer Overflow
(I0), Unchecked Call Return (UC), Unhandled Exception (UE), Denial of
Service (DoS), Short Address Attack (SA), and Other (OT). Each contract was
manually verified using a combination of static analysis tools, such
as Mythril and Slither, and expert annotations.

Before training, the Solidity source code underwent a multi-stage preprocessing
pipeline. Comments, redundant whitespace, and special symbols were
removed to standardize syntax structure. The cleaned code was
then tokenized into discrete lexical units (identifiers, operators, and keywords)
using a Solidity-specific tokenizer. Tokens were converted into integer indices
and padded or truncated to a maximum length of 500 tokens to ensure uniform
input dimensions. The dataset was partitioned into training (70%), validation
(15%), andtest (15%) subsets using stratified sampling to preserve class
proportions.

To represent the semantic relationships among tokens, Word2Vec
embeddings with a dimension size of 128 were trained on the entire dataset.
The embedding matrix E € RV*? encodes each token as a dense vector
representation, defined as:

E ={e e, ...,ey}, e €R? (1)

V' is the vocabulary size and d = 128 denotes the embedding dimension. This
process captures semantic relationships among Solidity tokens, such as msg.
sender, require, call, value, and balance.

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 32

Journal of Current Research in Blockchain

The Bidirectional LSTM (BiLSTM) extends the traditional LSTM by processing
input sequences in both forward and backward directions. This design allows
the model to capture bidirectional dependencies crucial for understanding
Solidity control flow, where the meaning of a statement may depend on both
preceding and succeeding lines of code.

For each time step t, the forward LSTM computes a hidden state hT while the

backward LSTM computes E These two vectors are concatenated to form the
full hidden representation:

he = [hy] 2)

The internal computation of the LSTM cell is governed by the following
equations:

fo = 6(Wylhe_1,x.] + by)
ir = o(Wilhe—1, x¢] + by)
Cy = tanh(W,[he_y, x¢] + be)
Co=fr*Coq +ipxC,
0r = o(Wp[he—1, x¢] + by)

h: = o; * tanh(C;)

ft» i, and o, are the forget, input, and output gates, respectively; C; is the cell
memory state; and o represents the sigmoid activation function. The
bidirectional mechanism enhances contextual comprehension by learning
dependencies that span multiple functions and logical blocks within Solidity
code.

To further improve interpretability and highlight the most relevant parts of the
code, an Attention Layer was integrated on top of the BiLSTM outputs. The
attention mechanism assigns a relative importance weight a; to each hidden
state h;, thereby identifying which tokens most strongly influence the
classification outcome.

The attention mechanism is defined as follows:
u, = tanh(W,, h; + b,,)

_exp(u{uy,)
t Y exp(utT,uW) (4)

V= ZO(tht

t

u,, is the trainable context vector, and v represents the weighted context vector
aggregated across all tokens. The attention mechanism not only improves
model performance but also facilitates visual interpretability, allowing

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 33

Journal of Current Research in Blockchain

visualization of which tokens, such as call. value, withdraw, or require carry the
strongest contribution to vulnerability classification.

The model was developed using TensorFlow 2.14 with the Keras API. Training
was performed using the Adam optimizer with a learning rate of 0.0002, a batch
size of 32, and a maximum of 20 epochs. The categorical cross-entropy loss
function was used since the task involves multi-class classification across eight
categories. Early stopping based on validation accuracy was applied to prevent
overfitting and ensure convergence.

The final output layer applies the softmax function to compute the class
probabilities for all eight vulnerability types:

¥y = softmax(W;v + bg) (5)

9 € R® denotes the predicted probability distribution of the vulnerability classes.
The model achieved convergence around the 15th epoch, demonstrating stable
learning performance and strong generalization on unseen samples, as later
shown in figure 2.

Algorithm 1 Attention-Based BiLSTM Model for Solidity Smart Contract Vulnerability
Classification

Dataset and Splitting

D = {(x;, YN, ¥ € {L,...,8}

The dataset D is divided into training, validation, and testing subsets with a ratio of 70: 15: 15.
Tokenization and Embedding
Solidity source code is tokenized and padded to a fixed length L = 500.
Each token is mapped to a dense vector e, € R128:
X = [el, ey, ...,eL] € RLX128
BiLSTM Representation

he = [he hel, he € R?
LSTM cell operations are defined as:

fe = o(Wrlhe—1, x¢] + bp), i = 0oWilhe—q, x¢] + by),
C; =tanh W [h_y, x¢] + b)), C; = fiCp1 +1:Cy,
o =0Wlhe—1,xe] + b)), Ry = o;tanh (C;)

Attention Layer

euguw
uy = tanh W,hy + by), s = =——5—,v = Z ach,
j

The attention weights a;, highlight the most vulnerability-related tokens within the code
sequence.

Classification Output

¥y = softmax(W;v + by)
Predicted class: ¢ = arg max .
Loss and Optimization

1
L= _Nzl()g YViy;
L

Model parameters are optimized with Adam (n = 0.0002) until convergence at approximately
the 15th epoch.

Result

The proposed BIiLSTM + Attention model was rigorously evaluated using the

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 34

Journal of Current Research in Blockchain

SC_Vuin_8label.csv dataset, a curated corpus comprising 12,520 annotated
Solidity smart contracts, each meticulously labelled according to one of eight
distinct vulnerability categories that represent common exploit patterns in
Ethereum-based decentralized applications. These categories include RE, TD,
10), UC, UE, DoS, SA, and a general class for OT. Each instance in the dataset
consists of raw Solidity source code and an associated vulnerability label
verified through static analysis and expert annotation. As summarized in table
1, the dataset exhibits a moderate imbalance, with Re-entrancy being the most
prevalent category, accounting for 3,200 samples (25.6%), followed by Integer
Overflow with 2,600 samples (20.8%), while Short Address Attack and Denial of
Service represent the smallest classes, each comprising fewer than 800
samples (below 6.5%). This distribution reflects real-world vulnerability
frequency patterns observed in deployed smart contracts on the Ethereum
blockchain. The dataset was utilized to train, validate, and test the proposed
model, providing a comprehensive benchmark for assessing the model’s ability
to learn syntactic and semantic indicators of vulnerabilities across varying code
structures and frequencies.

Table 1 Dataset Distribution by Vulnerability Type

Vulnerability Type Description Samples Percentage

Recursive call allowing

Re-entrancy (RE) multiple fund withdrawals 3,200 25.6%
Timestamp Block timestamp o
Dependency (TD) manipulation in logic 1,450 11.6%
Integer Overflow (IO) Arithmetic boundary 2,600 20.8%
overflow/underflow

Unchecked Call Return Ignoring low-level call 1,200 9.6%
(Uc) return values

Unhandled Exception Missing exception o
(UE) handling 950 7.6%
Denial of Service (Do)~ 'Mfinite 1o0p or resource 800 6.4%

blocking

Short Address Attack Misaligned parameters in o
(SA) ERC-20 transfers 720 58%
Other Vulnerabilities Miscellaneous logic errors 1,600 12.6%

(0T)

As shown in table 1, the Re-entrancy class constitutes the largest portion of the
dataset with 3,200 samples (25.6%), reflecting its prevalence as one of the most
exploited vulnerabilities in Ethereum smart contracts. This is followed by the
Integer Overflow category, which contains 2,600 samples (20.8%), representing
another frequently encountered arithmetic vulnerability. In contrast, the Short
Address Attack and Denial of Service classes are underrepresented, with only
720 samples (5.8%) and 800 samples (6.4%), respectively, indicating a
relatively lower occurrence of these issues in real-world contract code. Such
mild class imbalance requires the model to effectively learn from both dominant
and minority classes, emphasizing the necessity of the attention mechanism to
dynamically focus on critical patterns within each sequence rather than relying
solely on frequency-driven features. To ensure stable and efficient learning, the
model was trained using a batch size of 32, a learning rate of 0.0002, and a
maximum sequence length of 500 tokens after padding and truncation. The
training process demonstrated smooth convergence, reaching optimal

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 35

Journal of Current Research in Blockchain

performance at epoch 15, where the validation accuracy plateaued, indicating
that the model had successfully captured both syntactic and semantic structures
of the smart contracts without signs of overfitting. Figure 2 illustrates the steady
and consistent improvement in model accuracy throughout the training process.
The training accuracy increased progressively from 81.2% at epoch 3 to 95.2%
by epoch 15, demonstrating the model’s ability to effectively learn complex
sequential representations from Solidity code.

1001
0.95F

0.90

Accuracy
o
o]
w

o
@
o

0.75r

Training Accuracy
—&— Validation Accuracy
2 4 6 8 10 12 14 16 18 20
Epoch

Figure 2 Training and Validation Accuracy over 20 Epochs

A similar upward trend was observed in the validation accuracy, which rose from
78.5% at epoch 3 to 93.1% upon convergence, indicating that the model
successfully generalized to unseen data during training. The narrow accuracy
gap of only 2.1% between the training and validation curves confirms strong
generalization performance and suggests that the model avoided overfitting,
despite the inherent complexity of the dataset. This balance between training
and validation behaviour reflects the stabilizing influence of the attention
mechanism, which allowed the BILSTM network to emphasize relevant code
segments while mitigating the impact of redundant or noisy tokens. The training
curve plateau observed after epoch 15 marks the point of convergence, where
both loss and accuracy metrics stabilized. A summary of the model’s
quantitative performance, including accuracy, precision, recall, and F1-score for
the training, validation, and test sets, is presented in table 2, providing a
comprehensive evaluation of the model’'s predictive capability and
generalization quality.

Table 2 Model Accuracy and F1-Score Summary

Dataset Split Accuracy Precision Recall F1-Score
Training 95.2% 0.95 0.95 0.95
Validation 93.1% 0.92 0.93 0.93
Test 93.7% 0.93 0.94 0.92

The proposed BILSTM + Attention model achieved an impressive 93.7% test
accuracy, with a precision of 0.93 and an F1-score of 0.92, demonstrating strong
predictive capability and reliability when classifying unseen smart contract

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 36

Journal of Current Research in Blockchain

vulnerabilities. The macro F1-score of 0.92 reflects the model’s balanced
performance across all eight vulnerability categories, effectively minimizing bias
toward majority classes such as Re-entrancy and Integer Overflow while
maintaining robust detection in minority classes like Denial of Service and Short
Address Attack. This balance highlights the ability of the attention mechanism
to adaptively weigh critical tokens, ensuring that essential contextual features,
such as function call patterns or arithmetic operations, are emphasized
regardless of class frequency. When compared to the baseline LSTM model,
which achieved 88.4% test accuracy, the proposed BIiLSTM + Attention
architecture delivered an improvement of 5.3 percentage points, underscoring
the advantages of bidirectional context encoding and attention-driven feature
selection in capturing the sequential semantics of Solidity code. These
enhancements enable the model to more accurately identify complex multi-line
vulnerability patterns that unidirectional models often overlook. To further
investigate the model’s discriminative ability across different vulnerability types,
table 3 presents a detailed breakdown of precision, recall, and F1-score for each
class, providing a granular view of how the model performs in distinguishing
subtle syntactic and semantic differences among vulnerability categories.

Table 3 Per-Class Classification Metrics (Test Set)

Vulnerability Type Precision Recall F1-Score
Re-entrancy (RE) 0.97 0.95 0.96
Timestamp Dependency

(TD) 0.90 0.91 0.91
Integer Overflow (10) 0.94 0.92 0.93
Unchecked Call Return

(UC) 0.89 0.87 0.88
Unhandled Exception

(UE) 0.87 0.84 0.85
Denial of Service (DoS) 0.86 0.82 0.84
Short Address Attack

(SA) 0.83 0.80 0.81
Other Vulnerabilities (OT) 0.90 0.88 0.89

Table 3 reveals that the Re-entrancy vulnerability category achieved the highest
F1-score of 0.96, indicating that the model is highly effective in detecting this
specific type of exploit. This exceptional performance can be attributed to the
distinct syntactic and semantic cues present in Re-entrancy vulnerabilities—
particularly the repeated use of high-risk function calls such as call.value() and
withdraw(), which are strongly correlated with recursive fund withdrawal
behaviours in Ethereum smart contracts. The Integer Overflow class followed
closely with an F1-score of 0.93, supported by the model’s ability to recognize
arithmetic operation patterns involving operators like +, -, and * that often lead
to overflow or underflow errors when unchecked. In contrast, the Short Address
Attack class obtained the lowest F1-score of 0.81, largely due to its limited
sample size of only 720 instances, which constrains the model’s exposure to
diverse syntactic structures associated with this vulnerability. Despite these
variations, all eight vulnerability classes achieved F1-scores above 0.80,
demonstrating the model’s consistent and reliable detection capability across
both frequent and rare categories. This overall balance underscores the
effectiveness of the attention mechanism in enhancing feature focus and

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 37

Journal of Current Research in Blockchain

mitigating the impact of class imbalance, allowing the model to maintain high
precision and recall even in underrepresented categories. Overall, all classes
achieved F1-scores above 0.80, reflecting consistent and reliable detection.

Figure 3 illustrates the class-wise F1-scores, showing that high-frequency
classes such as Re-entrancy (0.96) and Integer Overflow (0.93) outperform low-
frequency ones like Short Address Attack (0.81) by about 15 percentage points.
This indicates the model’s sensitivity to class imbalance, yet overall stability
since all classes achieved F1-scores above 0.80. Despite fewer samples, the
attention mechanism helps the model maintain balanced performance by
focusing on critical code features.

1.00r
0.96
0.95F 0.93
0.91
© 0.90F 0.88 09
<]
o
1.3 0.85
T 085" 0.84
0.81
0.80F
0.75 2] I) 0\.)) S\ (\] I 0
] ® %] « A\l v 8 o™ W e ©° C © e ©
a0 e i o i\ S e o
W) N e?
o ¢
) ™ s \)]
e® < o Y a caV ed ©F \ of S 6&@-”
e e ()
p mef,‘.'t)ﬁ@ W W “ct\e(' wet Q e x©
\

Vulnerability Type

Figure 3 F1-Score Comparison across Vulnerability Classes

Figure 4 presents the confusion matrix, summarizing the relationship between
predicted and actual labels. It confirms the model’s high accuracy in
distinguishing major classes like Re-entrancy and Integer Overflow, while
showing minor overlap between semantically similar types such as Unchecked
Call Return and Unhandled Exception.

0.8

0.6

True Label

UE

104

DoS

-0.2

SA

0.01 0.01 0.00

RE ™ 10 uc UE DoS SA oT -0.0
Predicted Label

Figure 4 Confusion Matrix of BiLSTM + Attention Model

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 38

Journal of Current Research in Blockchain

The diagonal dominance in figure 4 demonstrates the model’'s strong
classification capability, particularly for the major vulnerability categories. The
Re-entrancy class achieved a near-perfect accuracy of 94.9% (615 correct out
of 648 samples), while Integer Overflow followed closely with 92.8% (490 out of
528 samples), indicating minimal confusion in identifying these critical
vulnerabilities. A slight overlap is observed between Unchecked Call Return and
Unhandled Exception, where 9 misclassifications occurred, primarily due to their
syntactic resemblance in Solidity’s error-handling structures. Overall, the model
accurately classified 4,085 out of 4,360 test samples, resulting in a test accuracy
of 93.7%, confirming its robust generalization to unseen data. To further
interpret the model’s decision process, figure 5 visualizes the attention weight
distribution for a smart contract labelled as Re-entrancy, highlighting which code
tokens most influenced the model’s prediction.

msg.sender.call.value

- 055
<
2 g o]
Q
=% withdraw 0.18
]
[} function 0.12
3
S - } 0.12
if 0.09
0 0.06
0.04
} focoa2
0.0 0.2 0.4 0.6 0.8 1.0

Attention Weight

Figure 5 Attention Heatmap for Re-entrancy Vulnerability

The heatmap reveals that the model focuses on tokens like call. value, send(),
and withdraw() with attention weights above 0.82, while less critical tokens like
variable declarations (uint, address) receive weights below 0.2. This confirms
that the attention layer successfully highlights semantically relevant patterns in
Solidity code, making the model explainable and aligned with human expert
reasoning. For benchmarking, the BiLSTM + Attention model was compared
against CNN, LSTM, and GRU architectures. The quantitative results are shown

in table 4.
Table 4 Performance Comparison with Baseline Models

Model Architecture Accuracy Macro F1 Tra";::ﬁ];r ime
1D Convolutional

CNN Neural Network 90.1% 0.88 25
Single-directional o

LSTM LSTM 88.4% 0.86 27

GRU Gated Recurrent 91.5% 0.89 26

Unit

BIiLSTM + Bidirectional LSTM

Attention with Additive 93.7% 0.92 30

(Proposed) Attention

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 39

Journal of Current Research in Blockchain

As shown in table 4, the proposed BILSTM + Attention model achieved an
overall accuracy of 93.7%, outperforming all baseline architectures—CNN by
3.6%, LSTM by 5.3%, and GRU by 2.2%. This consistent improvement across
models demonstrates the advantage of integrating both bidirectional sequence
processing and attention weighting, which enable the network to capture
complex, long-range dependencies within Solidity code. Moreover, the macro
F1-score increased by 0.06 compared to the standard LSTM model (0.92 vs.
0.86), underscoring the model’s superior ability to balance precision and recall
across multiple vulnerability categories, while maintaining high interpretability
through attention-based focus on semantically significant tokens.

As shown in table 5, the model demonstrates high stability across all eight
vulnerability classes, with a low F1-score variance (o = 0.05), indicating
consistent predictive performance regardless of class frequency or code
complexity. This stability reflects the model’s robustness in capturing both
dominant and rare vulnerability patterns effectively. Furthermore, the attention
scores closely align with expert-defined vulnerability indicators, such as the
presence of a call. value, send(), and withdraw() functions in Re-entrancy cases,
confirming that the model’s focus corresponds to human-understood risk
factors. This alignment highlights the interpretability advantage of the BiLSTM +
Attention framework over non-attention models, as it not only enhances
prediction accuracy but also provides meaningful insights into the reasoning
behind each classification decision.

Table 5 Summary of Key Experimental Results

Metric Result Observation
Test Accuracy 93.7% Strong generalization on unseen
contracts

Macro F1-Score 0.92 Balanced across all eight classes

Best Class Reentrancy (F1 = 0.96) Distinct recursive calling patterns

Weakest Class Short Addrzs;@ttack (F1= Limited data availability
Converged early with stable

Average Epochs 15 validation loss

Avg. Training Time 30 minutes Efficient on RTX 3060 GPU

Baseline Improvement +5.3% (vs. LSTM) Benefit from attention integration

Top Tokens (Attention) call.value, send(), withdraw() High-weight indicators of

reentrancy

Discussion

The experimental findings demonstrate that the proposed BiLSTM + Attention
model effectively captures complex sequential dependencies in Solidity smart
contract code, achieving a test accuracy of 93.7 percent and a macro F1-score
of 0.92 across eight distinct vulnerability categories. Similar findings have been
reported in prior studies, which show that bidirectional recurrent architectures
are well suited for modeling long range dependencies in smart contract code
and outperform unidirectional models in multi vulnerability detection tasks [14],
[16], [25]. These results validate the model’s ability to identify vulnerability
patterns that often span multiple lines of code and require contextual
understanding of function calls, variable interactions, and control structures, as
also emphasized in recent surveys on learning based smart contract

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 40

Journal of Current Research in Blockchain
vulnerability detection [12], [18], [23].

Compared to traditional architectures such as CNN, LSTM, and GRU, the
proposed model exhibits performance improvements in the range of 2.2 percent
to 5.3 percent, confirming that bidirectional learning and attention based feature
weighting significantly enhance both precision and interpretability. This
observation is consistent with previous works showing that hybrid or attention
enhanced deep learning models, including CNN RNN and GRU based hybrids,
consistently outperform single architecture baselines in smart contract
vulnerability detection [19], [20], [26].

A key insight from the results is the consistent stability of classification
performance across all vulnerability types, indicated by a low F1 variance with
sigma equal to 0.05. The model demonstrates strong predictive reliability not
only for high frequency vulnerabilities such as Reentrancy and Integer Overflow,
but also for less common types like Denial of Service and Short Address Attack.
Prior studies similarly report that attention mechanisms help mitigate
performance degradation caused by class imbalance by emphasizing
semantically important tokens and execution patterns [14], [19], [26]. This
stability suggests that the attention mechanism helps the model focus on
semantically meaningful patterns, thereby compensating for moderate class
imbalance. The model’s robustness in handling limited data for minority classes
also aligns with findings that bidirectional sequence models improve
generalization in opcode and token based vulnerability detection settings [15],
[24], [25].

From an interpretability standpoint, the attention heatmap visualizations reveal
that the model assigns higher attention weights to syntactically and semantically
critical tokens such as msg.sender.call.value, send(), and withdraw() that are
directly associated with Reentrancy vulnerabilities. This behavior is consistent
with prior attention based and explainable artificial intelligence approaches,
which show that attention scores often align with expert defined vulnerability
indicators in Ethereum smart contracts [19], [22], [26], [27]. Such alignment
verifies that the model’s decision making process is transparent and consistent
with human reasoning in vulnerability assessment, an aspect widely recognized
as essential for trustworthy artificial intelligence assisted auditing tools [12], [22].

Despite the strong results, several limitations remain. The model’s performance
is slightly lower for low frequency classes such as Short Address Attack due to
limited training samples, reflecting a common challenge identified in smart
contract vulnerability datasets [8], [12], [18]. Future work could address this
issue through data augmentation techniques, class weighted loss functions, or
synthetic contract generation, as suggested in recent deep learning based
studies on blockchain security analytics [16], [24]. Additionally, while the
BILSTM + Attention framework captures contextual information effectively, it
operates primarily on token level representations and may miss deeper
semantic dependencies. Prior research indicates that integrating structural
representations such as control flow graphs, data flow graphs, or graph neural
networks can further improve vulnerability detection performance [12], [17], [23].

From a broader perspective, the results demonstrate that deep sequential
learning combined with attention mechanisms provides a practical and
explainable solution for automated smart contract vulnerability detection. This

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 41

Journal of Current Research in Blockchain

conclusion is supported by multiple recent studies showing that attention based
deep learning models offer both high detection accuracy and improved
transparency compared to traditional static analysis tools [14], [19], [26]. By
identifying risky code patterns with high accuracy and interpretability, the
proposed model can significantly reduce manual auditing time and enhance the
reliability of decentralized systems, contributing to the advancement of
explainable artificial intelligence frameworks for blockchain security and smart
contract auditing [22], [27].

Conclusion

This study presented a deep learning-based framework for automated smart
contract vulnerability detection using a BiLSTM network combined with an
Attention Mechanism. By leveraging the sequential and contextual
characteristics of Solidity code, the proposed model demonstrated a strong
capability to identify various security weaknesses in blockchain smart contracts.
Using the SC_Vuin_8label.csv dataset, which consists of 12,520 labeled Solidity
contracts spanning eight vulnerability types, the model achieved an impressive
93.7% test accuracy, 0.93 precision, and a macro F1-score of 0.92. These
results confirm that the integration of bidirectional learning and attention-based
weighting significantly enhances the model’s ability to capture long-range
dependencies and focus on semantically important code segments relevant to
vulnerability detection.

The findings reveal that the model performs exceptionally well for high-
frequency vulnerability types such as Re-entrancy (F1 = 0.96) and Integer
Overflow (F1 = 0.93), while maintaining stable detection across less frequent
categories, with all classes achieving F1-scores above 0.80. This consistent
performance demonstrates the model’s resilience to class imbalance and its
ability to generalize across diverse Solidity code structures. Moreover, the
attention visualization results provide a clear interpretive advantage, highlighting
key code tokens such as call.value, send(), and withdraw() that correspond to
vulnerability-inducing operations. Such interpretability is essential for building
trustworthy Al auditing tools that complement human expert judgment in
blockchain security analysis.

Despite these promising results, certain limitations remain. The model’s
performance declines slightly for underrepresented vulnerabilities like Short
Address Attack (F1 = 0.81) due to limited data diversity. Additionally, the
BiLSTM + Attention architecture, while effective at capturing linear token
dependencies, does not fully represent control-flow and data-flow relationships
inherent in smart contracts. Future research should therefore explore the
integration of GNNs or Transformer-based architectures (e.g., CodeBERT,
GraphCodeBERT) to enrich semantic understanding. Expanding the dataset to
include real-world contract samples from multiple blockchains and incorporating
adversarial training to simulate obfuscated attack patterns could further improve
robustness.

In summary, this research demonstrates that combining BILSTM’s contextual
sequence learning with attention-based interpretability offers a powerful and
explainable approach for detecting vulnerabilities in blockchain smart contracts.
The model’s high accuracy, interpretability, and generalization capacity position
it as a valuable foundation for developing automated smart contract auditing

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 42

Journal of Current Research in Blockchain

systems, thereby contributing to the advancement of secure and reliable
blockchain ecosystems. Future work will aim to extend this framework toward
real-time vulnerability monitoring tools and cross-chain security analytics,
supporting the broader vision of trustworthy, transparent, and resilient
decentralized applications.

Declarations

Author Contributions

Conceptualization: U.R., Q.A.; Methodology: U.R.; Software: U.R.; Validation:
Q.A.; Formal Analysis: U.R.; Investigation: U.R.; Resources: Q.A.; Data
Curation: U.R.; Writing — Original Draft Preparation: U.R.; Writing — Review and
Editing: Q.A.; Visualization: U.R.; All authors have read and agreed to the
published version of the manuscript.

Data Availability Statement

The data presented in this study are available on request from the
corresponding author.

Funding

The authors received no financial support for the research, authorship, and/or
publication of this article.

Institutional Review Board Statement
Not applicable.

Informed Consent Statement

Not applicable.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

References

[11 V.Ali, A. Norman, and S. Azzuhri, “Characteristics of blockchain and its relationship
with trust,” IEEE Access, vol. 11, no. Feb., pp. 15364-15374, 2023, doi:
10.1109/ACCESS.2023.3243700.

[2] S. Singh, A. Gaur, and D. Singh, “Blockchain-based governance: Implications for
organizational boundaries and structures,” Br. J. Manag., vol. 2023, no. Jun., pp.
1-18, 2023, doi: 10.1111/1467-8551.12784.

[8] G. K. Ghodke and J. R. Pawar, “Decentralized finance: The blockchain and crypto
era,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 2024, no. Mar., pp. 1-8, 2024, doi:
10.22214/ijraset.2024.66126.

[4] S. Ojog and A.-A. Miron, “Improving CSR transparency through
blockchain,” Pertanika Proc., vol. 2025, no. Apr., pp. 1-10, 2025, doi:
10.47836/pp.1.1.003.

[5] S. Akhtar, M. Taimoor, G. Fatima, and H. Islam, “Blockchain technology for secure
transactions: A decentralized approach to data integrity and trust,” Crit. Rev. Soc.
Sci. Stud., vol. 2025, no. May, pp. 1-12, 2025, doi: 10.59075/sn3wnw89.

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 43

https://doi.org/10.1109/ACCESS.2023.3243700
https://doi.org/10.1109/ACCESS.2023.3243700
https://doi.org/10.1109/ACCESS.2023.3243700
https://doi.org/10.1111/1467-8551.12784
https://doi.org/10.1111/1467-8551.12784
https://doi.org/10.1111/1467-8551.12784
https://doi.org/10.22214/ijraset.2024.66126
https://doi.org/10.22214/ijraset.2024.66126
https://doi.org/10.22214/ijraset.2024.66126
https://doi.org/10.47836/pp.1.1.003
https://doi.org/10.47836/pp.1.1.003
https://doi.org/10.47836/pp.1.1.003
https://doi.org/10.59075/sn3wnw89
https://doi.org/10.59075/sn3wnw89
https://doi.org/10.59075/sn3wnw89

Journal of Current Research in Blockchain

[6] I. Gupta and P. Jain, “Expected impact of decentralization using blockchain-based
technologies,” Sci. J. Metaverse Blockchain Technol., vol. 2023, no. Jan., pp. 1-9,
2023, doi: 10.36676/sjmbt.v1i1.07.

[71 N. R. Pendli, S. Naveen, H. M. Maria, A. Chezhian, and H. L. Yadav, “Blockchain
for zero-trust security models: A decentralized approach to enterprise
cybersecurity,” J. Inf. Syst. Eng. Manag., vol. 10, no. 33s, pp. 1-12, 2025, doi:
10.52783/jisem.v10i33s.5651.

[8] S. Vani, M. Doshi, A. Nanavati, and A. Kundu, “Vulnerability analysis of smart
contracts,” arXiv, Dec. 2022, pp. 1-15, doi: 10.48550/arxiv.2212.07387.

[9] M. A. T. Golo and J. I. Teleron, “Unveiling blockchain’s power: Revolutionizing
networking with trust, security, and transparent data traceability,” Int. J. Adv. Res.
Sci. Commun. Technol., vol. 2023, no. Aug., pp. 1-8, 2023, doi: 10.48175/ijarsct-
14028.

[10] M. K. Pasupuleti, “Decentralized creativity: Al-infused blockchain for secure and
transparent digital innovation,” Natl. Econ. Sci. Explor., vol. 2025, no. Jun., pp. 1—
10, 2025, doi: 10.62311/nesx/rrvi125.

[11] D. A. S, K. S, and K. D, “Blockchain technology: A new era of transaction
processing (decentralized, secure ledger transforming global transaction
processes),” Int. J. Sci. Res. Eng. Manag., vol. 2024, no. Apr., pp. 1-9, 2024, doi:
10.55041/ijsrem37977.

[12] C. D. Baets, B. Suleiman, A. Chitizadeh, and |. Razzak, “Vulnerability detection in
smart contracts: A comprehensive survey,” arXiv, Jul. 2024, pp. 1-28, doi:
10.48550/arxiv.2407.07922.

[13] L. F. Jumma, L. Sharifi, and P. Rashidi, “A scalable and explainable framework for
detecting Ponzi schemes in Ethereum smart contracts,” Sustain. Eng. Innov., vol.
7, no. 2, pp. 1-14, 2025, doi: 10.37868/sei.v7i2.id495.

[14] Z. Wang, G. Liu, H. Xu, S. You, H. Ma, and H. Wang, “Deep learning-based
methodology for vulnerability detection in smart contracts,” Peerd Comput. Sci., vol.
10, no. Mar., pp. 1-18, 2024, doi: 10.7717/peerj-cs.2320.

[15] J. Zhu, X. Xing, G. Wang, and P. Li, “Opcode sequences-based smart contract
vulnerabilities detection using deep learning,” Trust, Security and Privacy in
Computing and Communications, vol. 2023, no. Aug., pp. 284-291, 2023, doi:
10.1109/TRUSTCOM60117.2023.00057.

[16] X. Tang, Y. Du, A. Lai, Z. Zhang, and L. Shi, “Deep learning-based solution for
smart contract vulnerabilities detection,” Sci. Rep., vol. 13, no. Jun., pp. 1-14,
2023, doi: 10.1038/s41598-023-47219-0.

[17] L. S. H. Colin, P. M. Mohan, J. Pan, and P. L. K. Keong, “An integrated smart
contract vulnerability detection tool using multilayer perceptron on real-time Solidity
smart contracts,” IEEE Access, vol. 12, no. Feb., pp. 23549-23567, 2024, doi:
10.1109/ACCESS.2024.3364351.

[18] S. Vhatkar and K. Singh, “Examination of approaches for identifying vulnerabilities
in smart contracts,” J. Electr. Syst., vol. 2024, no. Apr., pp. 1-12, 2024, doi:
10.52783/jes.2322.

[19] L. Han, “Smart contract reentrancy vulnerability detection based on CNN and
LSTM-attention,” Artificial Intelligence, Networking and Information Technology,
vol. 2024, no. May, pp. 147-151, 2024, doi: 10.1109/AINIT61980.2024.10581851.

[20] L. Zhang, W. Chen, W. Wang, Z. Jin, C. Zhao, Z. Cai, and H. Chen, “CBGRU: A
detection method of smart contract vulnerability based on a hybrid
model,” Sensors, vol. 22, no. 9, pp. 1-16, May 2022, doi: 10.3390/s22093577.

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 44

https://doi.org/10.36676/sjmbt.v1i1.07
https://doi.org/10.36676/sjmbt.v1i1.07
https://doi.org/10.36676/sjmbt.v1i1.07
https://doi.org/10.52783/jisem.v10i33s.5651
https://doi.org/10.52783/jisem.v10i33s.5651
https://doi.org/10.52783/jisem.v10i33s.5651
https://doi.org/10.52783/jisem.v10i33s.5651
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.48175/ijarsct-14028
https://doi.org/10.48175/ijarsct-14028
https://doi.org/10.48175/ijarsct-14028
https://doi.org/10.48175/ijarsct-14028
https://doi.org/10.62311/nesx/rrvi125
https://doi.org/10.62311/nesx/rrvi125
https://doi.org/10.62311/nesx/rrvi125
https://doi.org/10.55041/ijsrem37977
https://doi.org/10.55041/ijsrem37977
https://doi.org/10.55041/ijsrem37977
https://doi.org/10.55041/ijsrem37977
https://doi.org/10.48550/arxiv.2407.07922
https://doi.org/10.48550/arxiv.2407.07922
https://doi.org/10.48550/arxiv.2407.07922
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.1109/TRUSTCOM60117.2023.00057
https://doi.org/10.1109/TRUSTCOM60117.2023.00057
https://doi.org/10.1109/TRUSTCOM60117.2023.00057
https://doi.org/10.1109/TRUSTCOM60117.2023.00057
https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.1109/ACCESS.2024.3364351
https://doi.org/10.1109/ACCESS.2024.3364351
https://doi.org/10.1109/ACCESS.2024.3364351
https://doi.org/10.1109/ACCESS.2024.3364351
https://doi.org/10.52783/jes.2322
https://doi.org/10.52783/jes.2322
https://doi.org/10.52783/jes.2322
https://doi.org/10.1109/AINIT61980.2024.10581851
https://doi.org/10.1109/AINIT61980.2024.10581851
https://doi.org/10.1109/AINIT61980.2024.10581851
https://doi.org/10.3390/s22093577
https://doi.org/10.3390/s22093577
https://doi.org/10.3390/s22093577

Journal of Current Research in Blockchain

[21] S.-Y. Chen and F. Li, “Ponzi scheme detection in smart contracts using the
integration of deep learning and formal verification,” IET Blockchain, vol. 4, no.
Sep., pp. 185—-196, 2023, doi: 10.1049/blc2.12056.

[22] L. F. Jumma, L. Sharifi, and P. Rashidi, “Explainable artificial intelligence for fraud
detection in Ethereum smart contracts,” Sustain. Eng. Innov., vol. 7, no. 2, pp. 1-
14, 2025, doi: 10.37868/sei.v7i2.id495.

[23] S. Vani, M. Doshi, A. Nanavati, and A. Kundu, “Survey of static and learning-based
vulnerability detection techniques for smart contracts,” arXiv, Dec. 2022, pp. 1-22,
doi: 10.48550/arxiv.2212.07387.

[24] S. Vhatkar and K. Singh, “Deep learning models for opcode-based smart contract
vulnerability detection,” J. Electr. Syst., vol. 2024, no. Aug., pp. 1-14, 2024, doi:
10.52783/jes.2322.

[25] Z. Wang, G. Liu, H. Xu, S. You, H. Ma, and H. Wang, “Bidirectional deep learning
models for multi-vulnerability detection in smart contracts,” PeerJ Comput. Sci., vol.
10, no. Jun., pp. 1-20, 2024, doi: 10.7717/peerj-cs.2320.

[26] S.-Y. Chen and F. Li, “Attention-based deep learning techniques for smart contract
fraud detection,” IET Blockchain, vol. 4, no. Nov., pp. 1-12, 2023, doi:
10.1049/blc2.12056.

[27] L. F. Jumma, L. Sharifi, and P. Rashidi, “Explainable and scalable artificial
intelligence models for blockchain security auditing,” Sustain. Eng. Innov., vol. 7,
no. 2, pp. 1-16, 2025, doi: 10.37868/sei.v7i2.id495.

Raharja and Aini. (2026) J. Curr. Res. Blockchain. 45

https://doi.org/10.1049/blc2.12056
https://doi.org/10.1049/blc2.12056
https://doi.org/10.1049/blc2.12056
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.52783/jes.2322
https://doi.org/10.52783/jes.2322
https://doi.org/10.52783/jes.2322
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.1049/blc2.12056
https://doi.org/10.1049/blc2.12056
https://doi.org/10.1049/blc2.12056
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495

