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ABSTRACT 

The rapid adoption of blockchain technology has intensified the need for robust smart 

contract security mechanisms. However, traditional rule-based or static analysis tools 

often fail to detect context-dependent vulnerabilities embedded in complex contract 

logic. This study proposes a deep learning framework for automated smart contract 

vulnerability classification using a Bidirectional Long Short-Term Memory (BiLSTM) 

network integrated with an Attention Mechanism. The model was trained and 

evaluated on the SC_Vuln_8label.csv dataset, comprising 12,520 labelled Solidity 

smart contracts categorized into eight distinct vulnerability types, including Re-

entrancy, Integer Overflow, and Short Address Attack. Through bidirectional 

contextual learning and attention-based feature weighting, the proposed model 

achieved 93.7% test accuracy, 0.93 precision, and a macro F1-score of 0.92, 

outperforming baseline models such as CNN, GRU, and standard LSTM by up to 5.3 

percentage points. Attention heatmap analysis further revealed the model’s 

interpretability by highlighting vulnerability-prone code segments (e.g., call.value, 

send(), and withdraw() functions) consistent with expert-identified risk indicators. 

These results demonstrate that the BiLSTM + Attention framework not only enhances 

vulnerability detection accuracy but also provides transparent and explainable 

reasoning, offering a reliable foundation for AI-assisted smart contract auditing 

systems in blockchain security. 

Keywords Blockchain Security, Smart Contract Vulnerability Detection, BiLSTM, Attention 

Mechanism, Deep Learning 

INTRODUCTION 

Blockchain technology has emerged as a foundational infrastructure for 

decentralized digital systems by enabling transparent, immutable, and trustless 

transactions without reliance on centralized authorities [1]. One of the most 

significant innovations enabled by blockchain is the smart contract, which refers 

to a self executing program deployed on blockchain platforms such as Ethereum 

that automatically enforces predefined contractual rules once specified 

conditions are satisfied [2]. Smart contracts have gained widespread adoption 

across domains such as decentralized finance, supply chain management, and 

digital asset governance due to their potential to reduce operational costs and 

eliminate intermediaries. Despite these advantages, smart contracts introduce 

critical security risks that primarily stem from their immutable nature [3]. Once 

deployed, smart contracts cannot be modified or patched [4], and any hidden 

vulnerability may result in irreversible financial losses, system disruptions, or 

large scale exploitation [5]. Well known incidents such as the DAO attack have 

demonstrated the severe consequences of vulnerabilities in smart contract code 

and have emphasized the importance of effective vulnerability detection 

mechanisms before deployment [6]. 
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To address these security challenges, various smart contract auditing 

techniques have been proposed, including manual code inspection, symbolic 

execution, and static analysis tools such as Oyente, Mythril, and Slither [7]. 

These approaches constitute the foundation of early smart contract security 

analysis and remain widely used in practice. However, they exhibit inherent 

limitations, particularly in terms of high false positive rates, limited scalability, 

and insufficient capability to capture context dependent vulnerabilities that arise 

from complex interactions across multiple functions or execution paths [8]. As 

smart contracts become increasingly complex and modular, these rule based 

and heuristic driven methods struggle to model deeper semantic and structural 

dependencies in Solidity programs, which significantly constrains their 

effectiveness in real world scenarios [9]. 

Recent advances in deep learning and Natural Language Processing have 

reshaped the state of the art in automated code analysis by enabling data driven 

models to learn representations of source code as token sequences analogous 

to natural language [10]. This paradigm has facilitated the application of neural 

architectures such as Convolutional Neural Networks, Recurrent Neural 

Networks, Long Short Term Memory networks, and Transformer based models 

for smart contract vulnerability detection and program understanding tasks [11]. 

Although these approaches have demonstrated improved generalization 

performance compared to traditional static analysis tools, several critical 

challenges remain unresolved. In particular, many existing models rely on 

unidirectional sequence modeling, which limits their ability to capture 

bidirectional contextual dependencies where the semantics of a code statement 

depend on both preceding and subsequent elements. Furthermore, a significant 

portion of high performance deep learning based approaches operate as black 

boxes, providing limited interpretability and offering minimal insight into which 

specific code components contribute to vulnerability predictions. This lack of 

transparency poses a substantial barrier to adoption in blockchain security 

auditing, where explainability and trust are essential for practical deployment by 

developers and auditors [12]. 

Despite the progress achieved by recent learning based approaches, a clear 

research gap remains between detection accuracy and practical usability. 

Existing state of the art solutions rarely provide interpretable explanations or 

vulnerability localization capabilities that can support human centered auditing 

workflows. Moreover, the majority of prior studies do not explicitly address the 

challenge of modeling bidirectional semantic dependencies inherent in Solidity 

code, which are crucial for accurately identifying context sensitive 

vulnerabilities. 

Motivated by these limitations, this study proposes an automated and 

explainable smart contract vulnerability detection framework based on a 

Bidirectional Long Short Term Memory network integrated with an attention 

mechanism. The proposed framework jointly models forward and backward 

contextual dependencies within Solidity code sequences, enabling a more 

comprehensive representation of semantic relationships across multiple lines 

and functions. In addition, the attention mechanism enhances interpretability by 

assigning importance weights to vulnerability relevant code tokens, thereby 

providing transparent and human understandable explanations for model 

predictions. By integrating bidirectional sequence modeling with token level 
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attention, this work advances the state of the art in smart contract vulnerability 

detection by addressing both performance and explainability requirements. 

In summary, this research contributes an explainable deep learning based 

auditing framework that bridges the gap between automated vulnerability 

detection and practical security analysis. By capturing bidirectional contextual 

information and highlighting vulnerability indicative code patterns, the proposed 

approach enhances the reliability, transparency, and trustworthiness of AI 

assisted smart contract security systems and supports the secure development 

of blockchain based applications. 

Literature Review  

The security of blockchain based applications has become an increasingly 

important research area as smart contracts are widely used to automate 

financial transactions, decentralized governance, and digital asset 

management. Despite their potential to remove intermediaries and improve 

transparency, smart contracts remain highly susceptible to programming errors, 

design flaws, and logical inconsistencies that can lead to severe economic 

losses. Numerous large scale security incidents, including the DAO exploit in 

2016, the Parity wallet vulnerability in 2017, and multiple decentralized finance 

attacks reported between 2020 and 2023, have demonstrated the critical need 

for effective vulnerability detection and prevention mechanisms in smart 

contracts [13],[14]. As a result, research efforts in this field have evolved from 

traditional static and symbolic analysis techniques toward learning based and 

hybrid artificial intelligence driven approaches aimed at improving accuracy, 

scalability, and interpretability. 

Early studies primarily focused on rule based and static analysis methods for 

smart contract security assessment. Symbolic execution based tools were 

developed to detect common vulnerability patterns such as reentrancy, 

timestamp dependency, and transaction ordering dependence by exploring 

feasible execution paths of smart contract code [15]. Subsequent approaches 

extended symbolic analysis to identify unsafe contract behaviors related to 

unauthorized fund transfers, improper self destruction, and unbounded 

resource consumption [16]. Static analysis frameworks were also introduced to 

analyze Solidity source code or Ethereum bytecode and identify data flow and 

control flow vulnerabilities at a higher level of abstraction [17],[18]. Although 

these tools laid the foundation for automated smart contract auditing and remain 

widely adopted, they suffer from several inherent limitations. In particular, rule 

based systems often generate a large number of false positives, struggle to 

scale to complex contracts, and exhibit limited capability in detecting inter 

procedural vulnerabilities that span multiple functions or execution contexts. 

Moreover, their reliance on predefined rules and patterns restricts adaptability 

to novel or obfuscated attack strategies, motivating the exploration of data 

driven alternatives. 

To overcome the rigidity of rule based analysis, subsequent research introduced 

machine learning based techniques to automate vulnerability detection. These 

approaches typically relied on manually engineered features extracted from 

smart contract source code or opcode sequences, which were then used to train 

classical classifiers such as Support Vector Machines or ensemble learning 

models [19],[20]. By learning decision boundaries from labeled data, these 
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methods reduced reliance on expert crafted rules and improved detection 

automation. However, their dependence on handcrafted features limited their 

generalization capability, as feature selection often introduced bias and failed 

to capture the complex semantic relationships inherent in smart contract logic. 

In addition, many of these approaches struggled to adapt to previously unseen 

contract structures and evolving vulnerability patterns. 

Recent advances in deep learning have significantly influenced the state of the 

art in smart contract vulnerability detection by enabling models to learn 

representations directly from raw code without manual feature engineering. 

Recurrent neural network based architectures were proposed to model 

sequential dependencies in opcode or tokenized source code, demonstrating 

improved performance in identifying vulnerabilities such as reentrancy and 

arithmetic errors [21],[22]. Convolutional neural networks were also explored to 

capture local syntactic patterns in smart contract code by treating token 

sequences as spatial features, achieving competitive results in vulnerability 

classification tasks [23],[24]. Despite these advances, both convolution based 

and unidirectional recurrent models exhibit limitations in capturing long range 

dependencies and bidirectional contextual information, where the interpretation 

of a statement may depend on code that appears later in the sequence. 

To address these shortcomings, more recent studies have incorporated 

Bidirectional Long Short Term Memory networks and attention mechanisms to 

enhance both contextual understanding and model interpretability. Bidirectional 

architectures enable the simultaneous modeling of forward and backward 

dependencies, allowing deeper comprehension of control flow and data flow 

relationships within smart contracts [25]. Attention mechanisms further improve 

performance by dynamically assigning higher importance to vulnerability 

relevant tokens, thereby enabling the model to focus on semantically significant 

parts of the code [26]. These approaches have demonstrated that combining 

bidirectional sequence modeling with attention not only improves detection 

accuracy but also provides interpretable insights into the model decision making 

process, which is essential for practical adoption in security auditing contexts 

[27]. 

Building upon these developments, the present study proposes a BiLSTM with 

Attention framework specifically designed for multi class smart contract 

vulnerability classification using the SC_Vuln_8label.csv dataset. Unlike many 

existing studies that focus on binary classification or a limited subset of 

vulnerabilities, this work addresses eight major vulnerability categories 

simultaneously, enabling a more comprehensive evaluation of model 

generalization across diverse attack types. In addition to improving detection 

capability, the proposed framework emphasizes explainability by highlighting 

vulnerability indicative code tokens, thereby narrowing the gap between 

automated deep learning based detection and human centered security 

auditing. This research aligns with the growing emphasis on Explainable 

Artificial Intelligence in blockchain security and contributes toward the 

development of transparent, interpretable, and trustworthy vulnerability 

detection systems for secure blockchain ecosystems. 

Methods 

This study adopts a quantitative deep learning approach using a BiLSTM 
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network integrated with an Attention Mechanism to classify vulnerabilities in 

Solidity-based smart contracts. The overall analytical workflow is illustrated in 

figure 1. Research Steps, which outlines the five main stages of the research 

process: data preprocessing, tokenization and embedding, BiLSTM sequence 

modelling, attention-based weighting, and performance evaluation. Each stage 

is designed to ensure that the model can effectively capture both syntactic and 

semantic dependencies within Solidity code while maintaining interpretability 

through attention visualization. 

 

Figure 1 Research Steps 

The experiment employed the SC_Vuln_8label.csv dataset, containing 12,520 

labelled Solidity smart contracts distributed across eight vulnerability types: Re-

entrancy (RE), Timestamp Dependency (TD), Integer Overflow 

(IO), Unchecked Call Return (UC), Unhandled Exception (UE), Denial of 

Service (DoS), Short Address Attack (SA), and Other (OT). Each contract was 

manually verified using a combination of static analysis tools, such 

as Mythril and Slither, and expert annotations. 

Before training, the Solidity source code underwent a multi-stage preprocessing 

pipeline. Comments, redundant whitespace, and special symbols were 

removed to standardize syntax structure. The cleaned code was 

then tokenized into discrete lexical units (identifiers, operators, and keywords) 

using a Solidity-specific tokenizer. Tokens were converted into integer indices 

and padded or truncated to a maximum length of 500 tokens to ensure uniform 

input dimensions. The dataset was partitioned into training (70%), validation 

(15%), and test (15%) subsets using stratified sampling to preserve class 

proportions. 

To represent the semantic relationships among tokens, Word2Vec 

embeddings with a dimension size of 128 were trained on the entire dataset. 

The embedding matrix 𝐸 ∈ ℝ𝑉×𝑑 encodes each token as a dense vector 

representation, defined as: 

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑉},  𝑒𝑖 ∈ 𝑅𝑑 (1) 

𝑉 is the vocabulary size and 𝑑 = 128 denotes the embedding dimension. This 

process captures semantic relationships among Solidity tokens, such as msg. 

sender, require, call, value, and balance. 
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The Bidirectional LSTM (BiLSTM) extends the traditional LSTM by processing 

input sequences in both forward and backward directions. This design allows 

the model to capture bidirectional dependencies crucial for understanding 

Solidity control flow, where the meaning of a statement may depend on both 

preceding and succeeding lines of code. 

For each time step 𝑡, the forward LSTM computes a hidden state ℎ𝑡
⃗⃗  ⃗, while the 

backward LSTM computes ℎ𝑡
⃖⃗ ⃗⃗ . These two vectors are concatenated to form the 

full hidden representation: 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗ ℎ𝑡

⃖⃗ ⃗⃗ ] (2) 

The internal computation of the LSTM cell is governed by the following 

equations: 

𝑓𝑡 = σ(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = σ(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶𝑡̃ = tanh(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ 

𝑜𝑡 = σ(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 

(3) 

𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are the forget, input, and output gates, respectively; 𝐶𝑡 is the cell 

memory state; and 𝜎 represents the sigmoid activation function. The 

bidirectional mechanism enhances contextual comprehension by learning 

dependencies that span multiple functions and logical blocks within Solidity 

code. 

To further improve interpretability and highlight the most relevant parts of the 

code, an Attention Layer was integrated on top of the BiLSTM outputs. The 

attention mechanism assigns a relative importance weight 𝛼𝑡 to each hidden 

state ℎ𝑡, thereby identifying which tokens most strongly influence the 

classification outcome. 

The attention mechanism is defined as follows: 

𝑢𝑡 = tanh(𝑊𝑤ℎ𝑡 + 𝑏𝑤) 

α𝑡 =
exp(𝑢𝑡

⊤𝑢𝑤)

∑ exp(𝑢𝑡′
⊤ 𝑢𝑤)𝑡′

 

𝑣 = ∑α𝑡ℎ𝑡

𝑡

 

(4) 

𝑢𝑤 is the trainable context vector, and 𝑣 represents the weighted context vector 

aggregated across all tokens. The attention mechanism not only improves 

model performance but also facilitates visual interpretability, allowing 
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visualization of which tokens, such as call. value, withdraw, or require carry the 

strongest contribution to vulnerability classification. 

The model was developed using TensorFlow 2.14 with the Keras API. Training 

was performed using the Adam optimizer with a learning rate of 0.0002, a batch 

size of 32, and a maximum of 20 epochs. The categorical cross-entropy loss 

function was used since the task involves multi-class classification across eight 

categories. Early stopping based on validation accuracy was applied to prevent 

overfitting and ensure convergence. 

The final output layer applies the softmax function to compute the class 

probabilities for all eight vulnerability types: 

𝑦̂ = softmax(𝑊𝑠𝑣 + 𝑏𝑠) (5) 

𝑦̂ ∈ ℝ8 denotes the predicted probability distribution of the vulnerability classes. 

The model achieved convergence around the 15th epoch, demonstrating stable 

learning performance and strong generalization on unseen samples, as later 

shown in figure 2. 

Algorithm 1 Attention-Based BiLSTM Model for Solidity Smart Contract Vulnerability 

Classification 

Dataset and Splitting 

𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , 𝑦𝑖 ∈ {1,… ,8} 

 

The dataset 𝐷 is divided into training, validation, and testing subsets with a ratio of 70: 15: 15. 

Tokenization and Embedding 

Solidity source code is tokenized and padded to a fixed length 𝐿 = 500. 

Each token is mapped to a dense vector 𝑒𝑡 ∈ ℝ128: 

𝑋 = [𝑒1, 𝑒2, … , 𝑒𝐿] ∈ ℝ𝐿×128 
BiLSTM Representation 

ℎ𝑡 = [ℎ𝑡
⃗⃗  ⃗; ℎ𝑡

⃖⃗ ⃗⃗ ], ℎ𝑡 ∈ ℝ2𝑢 
LSTM cell operations are defined as: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), 𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),

𝐶̃𝑡 = tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐), 𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡,

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), ℎ𝑡 = 𝑜𝑡tanh (𝐶𝑡)

 

Attention Layer 

𝑢𝑡 = tanh (𝑊𝑤ℎ𝑡 + 𝑏𝑤), 𝛼𝑡 =
𝑒𝑢𝑡

⊤𝑢𝑤

∑ 𝑒𝑢𝑗
⊤𝑢𝑤

𝑗

, 𝑣 = ∑𝛼𝑡ℎ𝑡

𝑡

 

The attention weights 𝛼𝑡 highlight the most vulnerability-related tokens within the code 

sequence. 

Classification Output 

𝑦̂ = softmax(𝑊𝑠𝑣 + 𝑏𝑠) 

Predicted class: 𝑐̂ = arg max 𝑘 𝑦̂𝑘. 

Loss and Optimization 

ℒ = −
1

𝑁
∑log 𝑦̂𝑖,𝑦𝑖

𝑖

 

Model parameters are optimized with Adam (𝜂 = 0.0002) until convergence at approximately 

the 15th epoch. 

Result  

The proposed BiLSTM + Attention model was rigorously evaluated using the 
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SC_Vuln_8label.csv dataset, a curated corpus comprising 12,520 annotated 

Solidity smart contracts, each meticulously labelled according to one of eight 

distinct vulnerability categories that represent common exploit patterns in 

Ethereum-based decentralized applications. These categories include RE, TD, 

IO), UC, UE, DoS, SA, and a general class for OT. Each instance in the dataset 

consists of raw Solidity source code and an associated vulnerability label 

verified through static analysis and expert annotation. As summarized in table 

1, the dataset exhibits a moderate imbalance, with Re-entrancy being the most 

prevalent category, accounting for 3,200 samples (25.6%), followed by Integer 

Overflow with 2,600 samples (20.8%), while Short Address Attack and Denial of 

Service represent the smallest classes, each comprising fewer than 800 

samples (below 6.5%). This distribution reflects real-world vulnerability 

frequency patterns observed in deployed smart contracts on the Ethereum 

blockchain. The dataset was utilized to train, validate, and test the proposed 

model, providing a comprehensive benchmark for assessing the model’s ability 

to learn syntactic and semantic indicators of vulnerabilities across varying code 

structures and frequencies. 

Table 1 Dataset Distribution by Vulnerability Type 

Vulnerability Type Description Samples Percentage 

Re-entrancy (RE) 
Recursive call allowing 

multiple fund withdrawals 
3,200 25.6% 

Timestamp 

Dependency (TD) 

Block timestamp 

manipulation in logic 
1,450 11.6% 

Integer Overflow (IO) 
Arithmetic boundary 

overflow/underflow 
2,600 20.8% 

Unchecked Call Return 

(UC) 

Ignoring low-level call 

return values 
1,200 9.6% 

Unhandled Exception 

(UE) 

Missing exception 

handling 
950 7.6% 

Denial of Service (DoS) 
Infinite loop or resource 

blocking 
800 6.4% 

Short Address Attack 

(SA) 

Misaligned parameters in 

ERC-20 transfers 
720 5.8% 

Other Vulnerabilities 

(OT) 
Miscellaneous logic errors 1,600 12.6% 

As shown in table 1, the Re-entrancy class constitutes the largest portion of the 

dataset with 3,200 samples (25.6%), reflecting its prevalence as one of the most 

exploited vulnerabilities in Ethereum smart contracts. This is followed by the 

Integer Overflow category, which contains 2,600 samples (20.8%), representing 

another frequently encountered arithmetic vulnerability. In contrast, the Short 

Address Attack and Denial of Service classes are underrepresented, with only 

720 samples (5.8%) and 800 samples (6.4%), respectively, indicating a 

relatively lower occurrence of these issues in real-world contract code. Such 

mild class imbalance requires the model to effectively learn from both dominant 

and minority classes, emphasizing the necessity of the attention mechanism to 

dynamically focus on critical patterns within each sequence rather than relying 

solely on frequency-driven features. To ensure stable and efficient learning, the 

model was trained using a batch size of 32, a learning rate of 0.0002, and a 

maximum sequence length of 500 tokens after padding and truncation. The 

training process demonstrated smooth convergence, reaching optimal 
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performance at epoch 15, where the validation accuracy plateaued, indicating 

that the model had successfully captured both syntactic and semantic structures 

of the smart contracts without signs of overfitting. Figure 2 illustrates the steady 

and consistent improvement in model accuracy throughout the training process. 

The training accuracy increased progressively from 81.2% at epoch 3 to 95.2% 

by epoch 15, demonstrating the model’s ability to effectively learn complex 

sequential representations from Solidity code. 

 

Figure 2 Training and Validation Accuracy over 20 Epochs 

A similar upward trend was observed in the validation accuracy, which rose from 

78.5% at epoch 3 to 93.1% upon convergence, indicating that the model 

successfully generalized to unseen data during training. The narrow accuracy 

gap of only 2.1% between the training and validation curves confirms strong 

generalization performance and suggests that the model avoided overfitting, 

despite the inherent complexity of the dataset. This balance between training 

and validation behaviour reflects the stabilizing influence of the attention 

mechanism, which allowed the BiLSTM network to emphasize relevant code 

segments while mitigating the impact of redundant or noisy tokens. The training 

curve plateau observed after epoch 15 marks the point of convergence, where 

both loss and accuracy metrics stabilized. A summary of the model’s 

quantitative performance, including accuracy, precision, recall, and F1-score for 

the training, validation, and test sets, is presented in table 2, providing a 

comprehensive evaluation of the model’s predictive capability and 

generalization quality. 

Table 2 Model Accuracy and F1-Score Summary 

Dataset Split Accuracy Precision Recall F1-Score 

Training 95.2% 0.95 0.95 0.95 

Validation 93.1% 0.92 0.93 0.93 

Test 93.7% 0.93 0.94 0.92 

The proposed BiLSTM + Attention model achieved an impressive 93.7% test 

accuracy, with a precision of 0.93 and an F1-score of 0.92, demonstrating strong 

predictive capability and reliability when classifying unseen smart contract 
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vulnerabilities. The macro F1-score of 0.92 reflects the model’s balanced 

performance across all eight vulnerability categories, effectively minimizing bias 

toward majority classes such as Re-entrancy and Integer Overflow while 

maintaining robust detection in minority classes like Denial of Service and Short 

Address Attack. This balance highlights the ability of the attention mechanism 

to adaptively weigh critical tokens, ensuring that essential contextual features, 

such as function call patterns or arithmetic operations, are emphasized 

regardless of class frequency. When compared to the baseline LSTM model, 

which achieved 88.4% test accuracy, the proposed BiLSTM + Attention 

architecture delivered an improvement of 5.3 percentage points, underscoring 

the advantages of bidirectional context encoding and attention-driven feature 

selection in capturing the sequential semantics of Solidity code. These 

enhancements enable the model to more accurately identify complex multi-line 

vulnerability patterns that unidirectional models often overlook. To further 

investigate the model’s discriminative ability across different vulnerability types, 

table 3 presents a detailed breakdown of precision, recall, and F1-score for each 

class, providing a granular view of how the model performs in distinguishing 

subtle syntactic and semantic differences among vulnerability categories. 

Table 3 Per-Class Classification Metrics (Test Set) 

Vulnerability Type Precision Recall F1-Score 

Re-entrancy (RE) 0.97 0.95 0.96 

Timestamp Dependency 

(TD) 
0.90 0.91 0.91 

Integer Overflow (IO) 0.94 0.92 0.93 

Unchecked Call Return 

(UC) 
0.89 0.87 0.88 

Unhandled Exception 

(UE) 
0.87 0.84 0.85 

Denial of Service (DoS) 0.86 0.82 0.84 

Short Address Attack 

(SA) 
0.83 0.80 0.81 

Other Vulnerabilities (OT) 0.90 0.88 0.89 

Table 3 reveals that the Re-entrancy vulnerability category achieved the highest 

F1-score of 0.96, indicating that the model is highly effective in detecting this 

specific type of exploit. This exceptional performance can be attributed to the 

distinct syntactic and semantic cues present in Re-entrancy vulnerabilities—

particularly the repeated use of high-risk function calls such as call.value() and 

withdraw(), which are strongly correlated with recursive fund withdrawal 

behaviours in Ethereum smart contracts. The Integer Overflow class followed 

closely with an F1-score of 0.93, supported by the model’s ability to recognize 

arithmetic operation patterns involving operators like +, -, and * that often lead 

to overflow or underflow errors when unchecked. In contrast, the Short Address 

Attack class obtained the lowest F1-score of 0.81, largely due to its limited 

sample size of only 720 instances, which constrains the model’s exposure to 

diverse syntactic structures associated with this vulnerability. Despite these 

variations, all eight vulnerability classes achieved F1-scores above 0.80, 

demonstrating the model’s consistent and reliable detection capability across 

both frequent and rare categories. This overall balance underscores the 

effectiveness of the attention mechanism in enhancing feature focus and 
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mitigating the impact of class imbalance, allowing the model to maintain high 

precision and recall even in underrepresented categories. Overall, all classes 

achieved F1-scores above 0.80, reflecting consistent and reliable detection. 

Figure 3 illustrates the class-wise F1-scores, showing that high-frequency 

classes such as Re-entrancy (0.96) and Integer Overflow (0.93) outperform low-

frequency ones like Short Address Attack (0.81) by about 15 percentage points. 

This indicates the model’s sensitivity to class imbalance, yet overall stability 

since all classes achieved F1-scores above 0.80. Despite fewer samples, the 

attention mechanism helps the model maintain balanced performance by 

focusing on critical code features. 

 

Figure 3 F1-Score Comparison across Vulnerability Classes 

Figure 4 presents the confusion matrix, summarizing the relationship between 

predicted and actual labels. It confirms the model’s high accuracy in 

distinguishing major classes like Re-entrancy and Integer Overflow, while 

showing minor overlap between semantically similar types such as Unchecked 

Call Return and Unhandled Exception. 

 

Figure 4 Confusion Matrix of BiLSTM + Attention Model 
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The diagonal dominance in figure 4 demonstrates the model’s strong 

classification capability, particularly for the major vulnerability categories. The 

Re-entrancy class achieved a near-perfect accuracy of 94.9% (615 correct out 

of 648 samples), while Integer Overflow followed closely with 92.8% (490 out of 

528 samples), indicating minimal confusion in identifying these critical 

vulnerabilities. A slight overlap is observed between Unchecked Call Return and 

Unhandled Exception, where 9 misclassifications occurred, primarily due to their 

syntactic resemblance in Solidity’s error-handling structures. Overall, the model 

accurately classified 4,085 out of 4,360 test samples, resulting in a test accuracy 

of 93.7%, confirming its robust generalization to unseen data. To further 

interpret the model’s decision process, figure 5 visualizes the attention weight 

distribution for a smart contract labelled as Re-entrancy, highlighting which code 

tokens most influenced the model’s prediction. 

 

Figure 5 Attention Heatmap for Re-entrancy Vulnerability 

The heatmap reveals that the model focuses on tokens like call. value, send(), 

and withdraw() with attention weights above 0.82, while less critical tokens like 

variable declarations (uint, address) receive weights below 0.2. This confirms 

that the attention layer successfully highlights semantically relevant patterns in 

Solidity code, making the model explainable and aligned with human expert 

reasoning. For benchmarking, the BiLSTM + Attention model was compared 

against CNN, LSTM, and GRU architectures. The quantitative results are shown 

in table 4. 

Table 4 Performance Comparison with Baseline Models 

Model Architecture Accuracy Macro F1 
Training Time 

(min) 

CNN 
1D Convolutional 

Neural Network 
90.1% 0.88 25 

LSTM 
Single-directional 

LSTM 
88.4% 0.86 27 

GRU 
Gated Recurrent 

Unit 
91.5% 0.89 26 

BiLSTM + 

Attention 

(Proposed) 

Bidirectional LSTM 

with Additive 

Attention 

93.7% 0.92 30 
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As shown in table 4, the proposed BiLSTM + Attention model achieved an 

overall accuracy of 93.7%, outperforming all baseline architectures—CNN by 

3.6%, LSTM by 5.3%, and GRU by 2.2%. This consistent improvement across 

models demonstrates the advantage of integrating both bidirectional sequence 

processing and attention weighting, which enable the network to capture 

complex, long-range dependencies within Solidity code. Moreover, the macro 

F1-score increased by 0.06 compared to the standard LSTM model (0.92 vs. 

0.86), underscoring the model’s superior ability to balance precision and recall 

across multiple vulnerability categories, while maintaining high interpretability 

through attention-based focus on semantically significant tokens. 

As shown in table 5, the model demonstrates high stability across all eight 

vulnerability classes, with a low F1-score variance (σ = 0.05), indicating 

consistent predictive performance regardless of class frequency or code 

complexity. This stability reflects the model’s robustness in capturing both 

dominant and rare vulnerability patterns effectively. Furthermore, the attention 

scores closely align with expert-defined vulnerability indicators, such as the 

presence of a call. value, send(), and withdraw() functions in Re-entrancy cases, 

confirming that the model’s focus corresponds to human-understood risk 

factors. This alignment highlights the interpretability advantage of the BiLSTM + 

Attention framework over non-attention models, as it not only enhances 

prediction accuracy but also provides meaningful insights into the reasoning 

behind each classification decision. 

Table 5 Summary of Key Experimental Results 

Metric Result Observation 

Test Accuracy 93.7% 
Strong generalization on unseen 

contracts 

Macro F1-Score 0.92 Balanced across all eight classes 

Best Class Reentrancy (F1 = 0.96) Distinct recursive calling patterns 

Weakest Class 
Short Address Attack (F1 = 

0.81) 
Limited data availability 

Average Epochs 15 
Converged early with stable 

validation loss 

Avg. Training Time 30 minutes Efficient on RTX 3060 GPU 

Baseline Improvement +5.3% (vs. LSTM) Benefit from attention integration 

Top Tokens (Attention) call.value, send(), withdraw() 
High-weight indicators of 

reentrancy 

Discussion 

The experimental findings demonstrate that the proposed BiLSTM + Attention 

model effectively captures complex sequential dependencies in Solidity smart 

contract code, achieving a test accuracy of 93.7 percent and a macro F1-score 

of 0.92 across eight distinct vulnerability categories. Similar findings have been 

reported in prior studies, which show that bidirectional recurrent architectures 

are well suited for modeling long range dependencies in smart contract code 

and outperform unidirectional models in multi vulnerability detection tasks [14], 

[16], [25]. These results validate the model’s ability to identify vulnerability 

patterns that often span multiple lines of code and require contextual 

understanding of function calls, variable interactions, and control structures, as 

also emphasized in recent surveys on learning based smart contract 
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vulnerability detection [12], [18], [23]. 

Compared to traditional architectures such as CNN, LSTM, and GRU, the 

proposed model exhibits performance improvements in the range of 2.2 percent 

to 5.3 percent, confirming that bidirectional learning and attention based feature 

weighting significantly enhance both precision and interpretability. This 

observation is consistent with previous works showing that hybrid or attention 

enhanced deep learning models, including CNN RNN and GRU based hybrids, 

consistently outperform single architecture baselines in smart contract 

vulnerability detection [19], [20], [26]. 

A key insight from the results is the consistent stability of classification 

performance across all vulnerability types, indicated by a low F1 variance with 

sigma equal to 0.05. The model demonstrates strong predictive reliability not 

only for high frequency vulnerabilities such as Reentrancy and Integer Overflow, 

but also for less common types like Denial of Service and Short Address Attack. 

Prior studies similarly report that attention mechanisms help mitigate 

performance degradation caused by class imbalance by emphasizing 

semantically important tokens and execution patterns [14], [19], [26]. This 

stability suggests that the attention mechanism helps the model focus on 

semantically meaningful patterns, thereby compensating for moderate class 

imbalance. The model’s robustness in handling limited data for minority classes 

also aligns with findings that bidirectional sequence models improve 

generalization in opcode and token based vulnerability detection settings [15], 

[24], [25]. 

From an interpretability standpoint, the attention heatmap visualizations reveal 

that the model assigns higher attention weights to syntactically and semantically 

critical tokens such as msg.sender.call.value, send(), and withdraw() that are 

directly associated with Reentrancy vulnerabilities. This behavior is consistent 

with prior attention based and explainable artificial intelligence approaches, 

which show that attention scores often align with expert defined vulnerability 

indicators in Ethereum smart contracts [19], [22], [26], [27]. Such alignment 

verifies that the model’s decision making process is transparent and consistent 

with human reasoning in vulnerability assessment, an aspect widely recognized 

as essential for trustworthy artificial intelligence assisted auditing tools [12], [22]. 

Despite the strong results, several limitations remain. The model’s performance 

is slightly lower for low frequency classes such as Short Address Attack due to 

limited training samples, reflecting a common challenge identified in smart 

contract vulnerability datasets [8], [12], [18]. Future work could address this 

issue through data augmentation techniques, class weighted loss functions, or 

synthetic contract generation, as suggested in recent deep learning based 

studies on blockchain security analytics [16], [24]. Additionally, while the 

BiLSTM + Attention framework captures contextual information effectively, it 

operates primarily on token level representations and may miss deeper 

semantic dependencies. Prior research indicates that integrating structural 

representations such as control flow graphs, data flow graphs, or graph neural 

networks can further improve vulnerability detection performance [12], [17], [23]. 

From a broader perspective, the results demonstrate that deep sequential 

learning combined with attention mechanisms provides a practical and 

explainable solution for automated smart contract vulnerability detection. This 
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conclusion is supported by multiple recent studies showing that attention based 

deep learning models offer both high detection accuracy and improved 

transparency compared to traditional static analysis tools [14], [19], [26]. By 

identifying risky code patterns with high accuracy and interpretability, the 

proposed model can significantly reduce manual auditing time and enhance the 

reliability of decentralized systems, contributing to the advancement of 

explainable artificial intelligence frameworks for blockchain security and smart 

contract auditing [22], [27]. 

Conclusion 

This study presented a deep learning-based framework for automated smart 

contract vulnerability detection using a BiLSTM network combined with an 

Attention Mechanism. By leveraging the sequential and contextual 

characteristics of Solidity code, the proposed model demonstrated a strong 

capability to identify various security weaknesses in blockchain smart contracts. 

Using the SC_Vuln_8label.csv dataset, which consists of 12,520 labeled Solidity 

contracts spanning eight vulnerability types, the model achieved an impressive 

93.7% test accuracy, 0.93 precision, and a macro F1-score of 0.92. These 

results confirm that the integration of bidirectional learning and attention-based 

weighting significantly enhances the model’s ability to capture long-range 

dependencies and focus on semantically important code segments relevant to 

vulnerability detection. 

The findings reveal that the model performs exceptionally well for high-

frequency vulnerability types such as Re-entrancy (F1 = 0.96) and Integer 

Overflow (F1 = 0.93), while maintaining stable detection across less frequent 

categories, with all classes achieving F1-scores above 0.80. This consistent 

performance demonstrates the model’s resilience to class imbalance and its 

ability to generalize across diverse Solidity code structures. Moreover, the 

attention visualization results provide a clear interpretive advantage, highlighting 

key code tokens such as call.value, send(), and withdraw() that correspond to 

vulnerability-inducing operations. Such interpretability is essential for building 

trustworthy AI auditing tools that complement human expert judgment in 

blockchain security analysis. 

Despite these promising results, certain limitations remain. The model’s 

performance declines slightly for underrepresented vulnerabilities like Short 

Address Attack (F1 = 0.81) due to limited data diversity. Additionally, the 

BiLSTM + Attention architecture, while effective at capturing linear token 

dependencies, does not fully represent control-flow and data-flow relationships 

inherent in smart contracts. Future research should therefore explore the 

integration of GNNs or Transformer-based architectures (e.g., CodeBERT, 

GraphCodeBERT) to enrich semantic understanding. Expanding the dataset to 

include real-world contract samples from multiple blockchains and incorporating 

adversarial training to simulate obfuscated attack patterns could further improve 

robustness. 

In summary, this research demonstrates that combining BiLSTM’s contextual 

sequence learning with attention-based interpretability offers a powerful and 

explainable approach for detecting vulnerabilities in blockchain smart contracts. 

The model’s high accuracy, interpretability, and generalization capacity position 

it as a valuable foundation for developing automated smart contract auditing 
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systems, thereby contributing to the advancement of secure and reliable 

blockchain ecosystems. Future work will aim to extend this framework toward 

real-time vulnerability monitoring tools and cross-chain security analytics, 

supporting the broader vision of trustworthy, transparent, and resilient 

decentralized applications. 
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