
How to cite this article: U. Raharja and Q. Aini, “Enhancing Blockchain Security Through Smart Contract Vulnerability Classification

Using BiLSTM and Attention Mechanism,” J. Curr. Res. Blockchain, vol. 3, no. 1, pp. 28-45, 2026.

Enhancing Blockchain Security
Through Smart Contract
Vulnerability Classification Using
BiLSTM and Attention Mechanism

Untung Raharja1,* , Qurotul Aini2,

1,2Faculty of Science and Technology, University of Raharja, Tangerang 1511, Indonesia

ABSTRACT

The rapid adoption of blockchain technology has intensified the need for robust smart

contract security mechanisms. However, traditional rule-based or static analysis tools

often fail to detect context-dependent vulnerabilities embedded in complex contract

logic. This study proposes a deep learning framework for automated smart contract

vulnerability classification using a Bidirectional Long Short-Term Memory (BiLSTM)

network integrated with an Attention Mechanism. The model was trained and

evaluated on the SC_Vuln_8label.csv dataset, comprising 12,520 labelled Solidity

smart contracts categorized into eight distinct vulnerability types, including Re-

entrancy, Integer Overflow, and Short Address Attack. Through bidirectional

contextual learning and attention-based feature weighting, the proposed model

achieved 93.7% test accuracy, 0.93 precision, and a macro F1-score of 0.92,

outperforming baseline models such as CNN, GRU, and standard LSTM by up to 5.3

percentage points. Attention heatmap analysis further revealed the model’s

interpretability by highlighting vulnerability-prone code segments (e.g., call.value,

send(), and withdraw() functions) consistent with expert-identified risk indicators.

These results demonstrate that the BiLSTM + Attention framework not only enhances

vulnerability detection accuracy but also provides transparent and explainable

reasoning, offering a reliable foundation for AI-assisted smart contract auditing

systems in blockchain security.

Keywords Blockchain Security, Smart Contract Vulnerability Detection, BiLSTM, Attention

Mechanism, Deep Learning

INTRODUCTION

Blockchain technology has emerged as a foundational infrastructure for

decentralized digital systems by enabling transparent, immutable, and trustless

transactions without reliance on centralized authorities [1]. One of the most

significant innovations enabled by blockchain is the smart contract, which refers

to a self executing program deployed on blockchain platforms such as Ethereum

that automatically enforces predefined contractual rules once specified

conditions are satisfied [2]. Smart contracts have gained widespread adoption

across domains such as decentralized finance, supply chain management, and

digital asset governance due to their potential to reduce operational costs and

eliminate intermediaries. Despite these advantages, smart contracts introduce

critical security risks that primarily stem from their immutable nature [3]. Once

deployed, smart contracts cannot be modified or patched [4], and any hidden

vulnerability may result in irreversible financial losses, system disruptions, or

large scale exploitation [5]. Well known incidents such as the DAO attack have

demonstrated the severe consequences of vulnerabilities in smart contract code

and have emphasized the importance of effective vulnerability detection

mechanisms before deployment [6].

Submitted: 2 April 2025

Accepted: 15 May 2025

Published: 7 February 2026

Corresponding author

Untung Raharja,
untung@raharja.info

Additional Information and

Declarations can be found on

page 43

DOI: 10.47738/jcrb.v3i1.56

 Copyright

2026 Raharja and Aini

Distributed under

Creative Commons CC-BY 4.0

https://orcid.org/0000-0002-2166-2412
https://orcid.org/0000-0002-7546-5721
https://doi.org/10.47738/jcrb.v3i1.56
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

29

To address these security challenges, various smart contract auditing

techniques have been proposed, including manual code inspection, symbolic

execution, and static analysis tools such as Oyente, Mythril, and Slither [7].

These approaches constitute the foundation of early smart contract security

analysis and remain widely used in practice. However, they exhibit inherent

limitations, particularly in terms of high false positive rates, limited scalability,

and insufficient capability to capture context dependent vulnerabilities that arise

from complex interactions across multiple functions or execution paths [8]. As

smart contracts become increasingly complex and modular, these rule based

and heuristic driven methods struggle to model deeper semantic and structural

dependencies in Solidity programs, which significantly constrains their

effectiveness in real world scenarios [9].

Recent advances in deep learning and Natural Language Processing have

reshaped the state of the art in automated code analysis by enabling data driven

models to learn representations of source code as token sequences analogous

to natural language [10]. This paradigm has facilitated the application of neural

architectures such as Convolutional Neural Networks, Recurrent Neural

Networks, Long Short Term Memory networks, and Transformer based models

for smart contract vulnerability detection and program understanding tasks [11].

Although these approaches have demonstrated improved generalization

performance compared to traditional static analysis tools, several critical

challenges remain unresolved. In particular, many existing models rely on

unidirectional sequence modeling, which limits their ability to capture

bidirectional contextual dependencies where the semantics of a code statement

depend on both preceding and subsequent elements. Furthermore, a significant

portion of high performance deep learning based approaches operate as black

boxes, providing limited interpretability and offering minimal insight into which

specific code components contribute to vulnerability predictions. This lack of

transparency poses a substantial barrier to adoption in blockchain security

auditing, where explainability and trust are essential for practical deployment by

developers and auditors [12].

Despite the progress achieved by recent learning based approaches, a clear

research gap remains between detection accuracy and practical usability.

Existing state of the art solutions rarely provide interpretable explanations or

vulnerability localization capabilities that can support human centered auditing

workflows. Moreover, the majority of prior studies do not explicitly address the

challenge of modeling bidirectional semantic dependencies inherent in Solidity

code, which are crucial for accurately identifying context sensitive

vulnerabilities.

Motivated by these limitations, this study proposes an automated and

explainable smart contract vulnerability detection framework based on a

Bidirectional Long Short Term Memory network integrated with an attention

mechanism. The proposed framework jointly models forward and backward

contextual dependencies within Solidity code sequences, enabling a more

comprehensive representation of semantic relationships across multiple lines

and functions. In addition, the attention mechanism enhances interpretability by

assigning importance weights to vulnerability relevant code tokens, thereby

providing transparent and human understandable explanations for model

predictions. By integrating bidirectional sequence modeling with token level

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

30

attention, this work advances the state of the art in smart contract vulnerability

detection by addressing both performance and explainability requirements.

In summary, this research contributes an explainable deep learning based

auditing framework that bridges the gap between automated vulnerability

detection and practical security analysis. By capturing bidirectional contextual

information and highlighting vulnerability indicative code patterns, the proposed

approach enhances the reliability, transparency, and trustworthiness of AI

assisted smart contract security systems and supports the secure development

of blockchain based applications.

Literature Review

The security of blockchain based applications has become an increasingly

important research area as smart contracts are widely used to automate

financial transactions, decentralized governance, and digital asset

management. Despite their potential to remove intermediaries and improve

transparency, smart contracts remain highly susceptible to programming errors,

design flaws, and logical inconsistencies that can lead to severe economic

losses. Numerous large scale security incidents, including the DAO exploit in

2016, the Parity wallet vulnerability in 2017, and multiple decentralized finance

attacks reported between 2020 and 2023, have demonstrated the critical need

for effective vulnerability detection and prevention mechanisms in smart

contracts [13],[14]. As a result, research efforts in this field have evolved from

traditional static and symbolic analysis techniques toward learning based and

hybrid artificial intelligence driven approaches aimed at improving accuracy,

scalability, and interpretability.

Early studies primarily focused on rule based and static analysis methods for

smart contract security assessment. Symbolic execution based tools were

developed to detect common vulnerability patterns such as reentrancy,

timestamp dependency, and transaction ordering dependence by exploring

feasible execution paths of smart contract code [15]. Subsequent approaches

extended symbolic analysis to identify unsafe contract behaviors related to

unauthorized fund transfers, improper self destruction, and unbounded

resource consumption [16]. Static analysis frameworks were also introduced to

analyze Solidity source code or Ethereum bytecode and identify data flow and

control flow vulnerabilities at a higher level of abstraction [17],[18]. Although

these tools laid the foundation for automated smart contract auditing and remain

widely adopted, they suffer from several inherent limitations. In particular, rule

based systems often generate a large number of false positives, struggle to

scale to complex contracts, and exhibit limited capability in detecting inter

procedural vulnerabilities that span multiple functions or execution contexts.

Moreover, their reliance on predefined rules and patterns restricts adaptability

to novel or obfuscated attack strategies, motivating the exploration of data

driven alternatives.

To overcome the rigidity of rule based analysis, subsequent research introduced

machine learning based techniques to automate vulnerability detection. These

approaches typically relied on manually engineered features extracted from

smart contract source code or opcode sequences, which were then used to train

classical classifiers such as Support Vector Machines or ensemble learning

models [19],[20]. By learning decision boundaries from labeled data, these

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

31

methods reduced reliance on expert crafted rules and improved detection

automation. However, their dependence on handcrafted features limited their

generalization capability, as feature selection often introduced bias and failed

to capture the complex semantic relationships inherent in smart contract logic.

In addition, many of these approaches struggled to adapt to previously unseen

contract structures and evolving vulnerability patterns.

Recent advances in deep learning have significantly influenced the state of the

art in smart contract vulnerability detection by enabling models to learn

representations directly from raw code without manual feature engineering.

Recurrent neural network based architectures were proposed to model

sequential dependencies in opcode or tokenized source code, demonstrating

improved performance in identifying vulnerabilities such as reentrancy and

arithmetic errors [21],[22]. Convolutional neural networks were also explored to

capture local syntactic patterns in smart contract code by treating token

sequences as spatial features, achieving competitive results in vulnerability

classification tasks [23],[24]. Despite these advances, both convolution based

and unidirectional recurrent models exhibit limitations in capturing long range

dependencies and bidirectional contextual information, where the interpretation

of a statement may depend on code that appears later in the sequence.

To address these shortcomings, more recent studies have incorporated

Bidirectional Long Short Term Memory networks and attention mechanisms to

enhance both contextual understanding and model interpretability. Bidirectional

architectures enable the simultaneous modeling of forward and backward

dependencies, allowing deeper comprehension of control flow and data flow

relationships within smart contracts [25]. Attention mechanisms further improve

performance by dynamically assigning higher importance to vulnerability

relevant tokens, thereby enabling the model to focus on semantically significant

parts of the code [26]. These approaches have demonstrated that combining

bidirectional sequence modeling with attention not only improves detection

accuracy but also provides interpretable insights into the model decision making

process, which is essential for practical adoption in security auditing contexts

[27].

Building upon these developments, the present study proposes a BiLSTM with

Attention framework specifically designed for multi class smart contract

vulnerability classification using the SC_Vuln_8label.csv dataset. Unlike many

existing studies that focus on binary classification or a limited subset of

vulnerabilities, this work addresses eight major vulnerability categories

simultaneously, enabling a more comprehensive evaluation of model

generalization across diverse attack types. In addition to improving detection

capability, the proposed framework emphasizes explainability by highlighting

vulnerability indicative code tokens, thereby narrowing the gap between

automated deep learning based detection and human centered security

auditing. This research aligns with the growing emphasis on Explainable

Artificial Intelligence in blockchain security and contributes toward the

development of transparent, interpretable, and trustworthy vulnerability

detection systems for secure blockchain ecosystems.

Methods

This study adopts a quantitative deep learning approach using a BiLSTM

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

32

network integrated with an Attention Mechanism to classify vulnerabilities in

Solidity-based smart contracts. The overall analytical workflow is illustrated in

figure 1. Research Steps, which outlines the five main stages of the research

process: data preprocessing, tokenization and embedding, BiLSTM sequence

modelling, attention-based weighting, and performance evaluation. Each stage

is designed to ensure that the model can effectively capture both syntactic and

semantic dependencies within Solidity code while maintaining interpretability

through attention visualization.

Figure 1 Research Steps

The experiment employed the SC_Vuln_8label.csv dataset, containing 12,520

labelled Solidity smart contracts distributed across eight vulnerability types: Re-

entrancy (RE), Timestamp Dependency (TD), Integer Overflow

(IO), Unchecked Call Return (UC), Unhandled Exception (UE), Denial of

Service (DoS), Short Address Attack (SA), and Other (OT). Each contract was

manually verified using a combination of static analysis tools, such

as Mythril and Slither, and expert annotations.

Before training, the Solidity source code underwent a multi-stage preprocessing

pipeline. Comments, redundant whitespace, and special symbols were

removed to standardize syntax structure. The cleaned code was

then tokenized into discrete lexical units (identifiers, operators, and keywords)

using a Solidity-specific tokenizer. Tokens were converted into integer indices

and padded or truncated to a maximum length of 500 tokens to ensure uniform

input dimensions. The dataset was partitioned into training (70%), validation

(15%), and test (15%) subsets using stratified sampling to preserve class

proportions.

To represent the semantic relationships among tokens, Word2Vec

embeddings with a dimension size of 128 were trained on the entire dataset.

The embedding matrix 𝐸 ∈ ℝ𝑉×𝑑 encodes each token as a dense vector

representation, defined as:

𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑉}, 𝑒𝑖 ∈ 𝑅𝑑 (1)

𝑉 is the vocabulary size and 𝑑 = 128 denotes the embedding dimension. This

process captures semantic relationships among Solidity tokens, such as msg.

sender, require, call, value, and balance.

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

33

The Bidirectional LSTM (BiLSTM) extends the traditional LSTM by processing

input sequences in both forward and backward directions. This design allows

the model to capture bidirectional dependencies crucial for understanding

Solidity control flow, where the meaning of a statement may depend on both

preceding and succeeding lines of code.

For each time step 𝑡, the forward LSTM computes a hidden state ℎ𝑡
⃗⃗ ⃗, while the

backward LSTM computes ℎ𝑡
⃖⃗ ⃗⃗ . These two vectors are concatenated to form the

full hidden representation:

ℎ𝑡 = [ℎ𝑡
⃗⃗ ⃗ ℎ𝑡

⃖⃗ ⃗⃗] (2)

The internal computation of the LSTM cell is governed by the following

equations:

𝑓𝑡 = σ(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑖𝑡 = σ(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝐶𝑡̃ = tanh(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃

𝑜𝑡 = σ(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

(3)

𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are the forget, input, and output gates, respectively; 𝐶𝑡 is the cell

memory state; and 𝜎 represents the sigmoid activation function. The

bidirectional mechanism enhances contextual comprehension by learning

dependencies that span multiple functions and logical blocks within Solidity

code.

To further improve interpretability and highlight the most relevant parts of the

code, an Attention Layer was integrated on top of the BiLSTM outputs. The

attention mechanism assigns a relative importance weight 𝛼𝑡 to each hidden

state ℎ𝑡, thereby identifying which tokens most strongly influence the

classification outcome.

The attention mechanism is defined as follows:

𝑢𝑡 = tanh(𝑊𝑤ℎ𝑡 + 𝑏𝑤)

α𝑡 =
exp(𝑢𝑡

⊤𝑢𝑤)

∑ exp(𝑢𝑡′
⊤ 𝑢𝑤)𝑡′

𝑣 = ∑α𝑡ℎ𝑡

𝑡

(4)

𝑢𝑤 is the trainable context vector, and 𝑣 represents the weighted context vector

aggregated across all tokens. The attention mechanism not only improves

model performance but also facilitates visual interpretability, allowing

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

34

visualization of which tokens, such as call. value, withdraw, or require carry the

strongest contribution to vulnerability classification.

The model was developed using TensorFlow 2.14 with the Keras API. Training

was performed using the Adam optimizer with a learning rate of 0.0002, a batch

size of 32, and a maximum of 20 epochs. The categorical cross-entropy loss

function was used since the task involves multi-class classification across eight

categories. Early stopping based on validation accuracy was applied to prevent

overfitting and ensure convergence.

The final output layer applies the softmax function to compute the class

probabilities for all eight vulnerability types:

𝑦̂ = softmax(𝑊𝑠𝑣 + 𝑏𝑠) (5)

𝑦̂ ∈ ℝ8 denotes the predicted probability distribution of the vulnerability classes.

The model achieved convergence around the 15th epoch, demonstrating stable

learning performance and strong generalization on unseen samples, as later

shown in figure 2.

Algorithm 1 Attention-Based BiLSTM Model for Solidity Smart Contract Vulnerability

Classification

Dataset and Splitting

𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , 𝑦𝑖 ∈ {1,… ,8}

The dataset 𝐷 is divided into training, validation, and testing subsets with a ratio of 70: 15: 15.

Tokenization and Embedding

Solidity source code is tokenized and padded to a fixed length 𝐿 = 500.

Each token is mapped to a dense vector 𝑒𝑡 ∈ ℝ128:

𝑋 = [𝑒1, 𝑒2, … , 𝑒𝐿] ∈ ℝ𝐿×128
BiLSTM Representation

ℎ𝑡 = [ℎ𝑡
⃗⃗ ⃗; ℎ𝑡

⃖⃗ ⃗⃗], ℎ𝑡 ∈ ℝ2𝑢
LSTM cell operations are defined as:

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓), 𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),

𝐶̃𝑡 = tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐), 𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡,

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), ℎ𝑡 = 𝑜𝑡tanh (𝐶𝑡)

Attention Layer

𝑢𝑡 = tanh (𝑊𝑤ℎ𝑡 + 𝑏𝑤), 𝛼𝑡 =
𝑒𝑢𝑡

⊤𝑢𝑤

∑ 𝑒𝑢𝑗
⊤𝑢𝑤

𝑗

, 𝑣 = ∑𝛼𝑡ℎ𝑡

𝑡

The attention weights 𝛼𝑡 highlight the most vulnerability-related tokens within the code

sequence.

Classification Output

𝑦̂ = softmax(𝑊𝑠𝑣 + 𝑏𝑠)

Predicted class: 𝑐̂ = arg max 𝑘 𝑦̂𝑘.

Loss and Optimization

ℒ = −
1

𝑁
∑log 𝑦̂𝑖,𝑦𝑖

𝑖

Model parameters are optimized with Adam (𝜂 = 0.0002) until convergence at approximately

the 15th epoch.

Result

The proposed BiLSTM + Attention model was rigorously evaluated using the

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

35

SC_Vuln_8label.csv dataset, a curated corpus comprising 12,520 annotated

Solidity smart contracts, each meticulously labelled according to one of eight

distinct vulnerability categories that represent common exploit patterns in

Ethereum-based decentralized applications. These categories include RE, TD,

IO), UC, UE, DoS, SA, and a general class for OT. Each instance in the dataset

consists of raw Solidity source code and an associated vulnerability label

verified through static analysis and expert annotation. As summarized in table

1, the dataset exhibits a moderate imbalance, with Re-entrancy being the most

prevalent category, accounting for 3,200 samples (25.6%), followed by Integer

Overflow with 2,600 samples (20.8%), while Short Address Attack and Denial of

Service represent the smallest classes, each comprising fewer than 800

samples (below 6.5%). This distribution reflects real-world vulnerability

frequency patterns observed in deployed smart contracts on the Ethereum

blockchain. The dataset was utilized to train, validate, and test the proposed

model, providing a comprehensive benchmark for assessing the model’s ability

to learn syntactic and semantic indicators of vulnerabilities across varying code

structures and frequencies.

Table 1 Dataset Distribution by Vulnerability Type

Vulnerability Type Description Samples Percentage

Re-entrancy (RE)
Recursive call allowing

multiple fund withdrawals
3,200 25.6%

Timestamp

Dependency (TD)

Block timestamp

manipulation in logic
1,450 11.6%

Integer Overflow (IO)
Arithmetic boundary

overflow/underflow
2,600 20.8%

Unchecked Call Return

(UC)

Ignoring low-level call

return values
1,200 9.6%

Unhandled Exception

(UE)

Missing exception

handling
950 7.6%

Denial of Service (DoS)
Infinite loop or resource

blocking
800 6.4%

Short Address Attack

(SA)

Misaligned parameters in

ERC-20 transfers
720 5.8%

Other Vulnerabilities

(OT)
Miscellaneous logic errors 1,600 12.6%

As shown in table 1, the Re-entrancy class constitutes the largest portion of the

dataset with 3,200 samples (25.6%), reflecting its prevalence as one of the most

exploited vulnerabilities in Ethereum smart contracts. This is followed by the

Integer Overflow category, which contains 2,600 samples (20.8%), representing

another frequently encountered arithmetic vulnerability. In contrast, the Short

Address Attack and Denial of Service classes are underrepresented, with only

720 samples (5.8%) and 800 samples (6.4%), respectively, indicating a

relatively lower occurrence of these issues in real-world contract code. Such

mild class imbalance requires the model to effectively learn from both dominant

and minority classes, emphasizing the necessity of the attention mechanism to

dynamically focus on critical patterns within each sequence rather than relying

solely on frequency-driven features. To ensure stable and efficient learning, the

model was trained using a batch size of 32, a learning rate of 0.0002, and a

maximum sequence length of 500 tokens after padding and truncation. The

training process demonstrated smooth convergence, reaching optimal

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

36

performance at epoch 15, where the validation accuracy plateaued, indicating

that the model had successfully captured both syntactic and semantic structures

of the smart contracts without signs of overfitting. Figure 2 illustrates the steady

and consistent improvement in model accuracy throughout the training process.

The training accuracy increased progressively from 81.2% at epoch 3 to 95.2%

by epoch 15, demonstrating the model’s ability to effectively learn complex

sequential representations from Solidity code.

Figure 2 Training and Validation Accuracy over 20 Epochs

A similar upward trend was observed in the validation accuracy, which rose from

78.5% at epoch 3 to 93.1% upon convergence, indicating that the model

successfully generalized to unseen data during training. The narrow accuracy

gap of only 2.1% between the training and validation curves confirms strong

generalization performance and suggests that the model avoided overfitting,

despite the inherent complexity of the dataset. This balance between training

and validation behaviour reflects the stabilizing influence of the attention

mechanism, which allowed the BiLSTM network to emphasize relevant code

segments while mitigating the impact of redundant or noisy tokens. The training

curve plateau observed after epoch 15 marks the point of convergence, where

both loss and accuracy metrics stabilized. A summary of the model’s

quantitative performance, including accuracy, precision, recall, and F1-score for

the training, validation, and test sets, is presented in table 2, providing a

comprehensive evaluation of the model’s predictive capability and

generalization quality.

Table 2 Model Accuracy and F1-Score Summary

Dataset Split Accuracy Precision Recall F1-Score

Training 95.2% 0.95 0.95 0.95

Validation 93.1% 0.92 0.93 0.93

Test 93.7% 0.93 0.94 0.92

The proposed BiLSTM + Attention model achieved an impressive 93.7% test

accuracy, with a precision of 0.93 and an F1-score of 0.92, demonstrating strong

predictive capability and reliability when classifying unseen smart contract

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

37

vulnerabilities. The macro F1-score of 0.92 reflects the model’s balanced

performance across all eight vulnerability categories, effectively minimizing bias

toward majority classes such as Re-entrancy and Integer Overflow while

maintaining robust detection in minority classes like Denial of Service and Short

Address Attack. This balance highlights the ability of the attention mechanism

to adaptively weigh critical tokens, ensuring that essential contextual features,

such as function call patterns or arithmetic operations, are emphasized

regardless of class frequency. When compared to the baseline LSTM model,

which achieved 88.4% test accuracy, the proposed BiLSTM + Attention

architecture delivered an improvement of 5.3 percentage points, underscoring

the advantages of bidirectional context encoding and attention-driven feature

selection in capturing the sequential semantics of Solidity code. These

enhancements enable the model to more accurately identify complex multi-line

vulnerability patterns that unidirectional models often overlook. To further

investigate the model’s discriminative ability across different vulnerability types,

table 3 presents a detailed breakdown of precision, recall, and F1-score for each

class, providing a granular view of how the model performs in distinguishing

subtle syntactic and semantic differences among vulnerability categories.

Table 3 Per-Class Classification Metrics (Test Set)

Vulnerability Type Precision Recall F1-Score

Re-entrancy (RE) 0.97 0.95 0.96

Timestamp Dependency

(TD)
0.90 0.91 0.91

Integer Overflow (IO) 0.94 0.92 0.93

Unchecked Call Return

(UC)
0.89 0.87 0.88

Unhandled Exception

(UE)
0.87 0.84 0.85

Denial of Service (DoS) 0.86 0.82 0.84

Short Address Attack

(SA)
0.83 0.80 0.81

Other Vulnerabilities (OT) 0.90 0.88 0.89

Table 3 reveals that the Re-entrancy vulnerability category achieved the highest

F1-score of 0.96, indicating that the model is highly effective in detecting this

specific type of exploit. This exceptional performance can be attributed to the

distinct syntactic and semantic cues present in Re-entrancy vulnerabilities—

particularly the repeated use of high-risk function calls such as call.value() and

withdraw(), which are strongly correlated with recursive fund withdrawal

behaviours in Ethereum smart contracts. The Integer Overflow class followed

closely with an F1-score of 0.93, supported by the model’s ability to recognize

arithmetic operation patterns involving operators like +, -, and * that often lead

to overflow or underflow errors when unchecked. In contrast, the Short Address

Attack class obtained the lowest F1-score of 0.81, largely due to its limited

sample size of only 720 instances, which constrains the model’s exposure to

diverse syntactic structures associated with this vulnerability. Despite these

variations, all eight vulnerability classes achieved F1-scores above 0.80,

demonstrating the model’s consistent and reliable detection capability across

both frequent and rare categories. This overall balance underscores the

effectiveness of the attention mechanism in enhancing feature focus and

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

38

mitigating the impact of class imbalance, allowing the model to maintain high

precision and recall even in underrepresented categories. Overall, all classes

achieved F1-scores above 0.80, reflecting consistent and reliable detection.

Figure 3 illustrates the class-wise F1-scores, showing that high-frequency

classes such as Re-entrancy (0.96) and Integer Overflow (0.93) outperform low-

frequency ones like Short Address Attack (0.81) by about 15 percentage points.

This indicates the model’s sensitivity to class imbalance, yet overall stability

since all classes achieved F1-scores above 0.80. Despite fewer samples, the

attention mechanism helps the model maintain balanced performance by

focusing on critical code features.

Figure 3 F1-Score Comparison across Vulnerability Classes

Figure 4 presents the confusion matrix, summarizing the relationship between

predicted and actual labels. It confirms the model’s high accuracy in

distinguishing major classes like Re-entrancy and Integer Overflow, while

showing minor overlap between semantically similar types such as Unchecked

Call Return and Unhandled Exception.

Figure 4 Confusion Matrix of BiLSTM + Attention Model

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

39

The diagonal dominance in figure 4 demonstrates the model’s strong

classification capability, particularly for the major vulnerability categories. The

Re-entrancy class achieved a near-perfect accuracy of 94.9% (615 correct out

of 648 samples), while Integer Overflow followed closely with 92.8% (490 out of

528 samples), indicating minimal confusion in identifying these critical

vulnerabilities. A slight overlap is observed between Unchecked Call Return and

Unhandled Exception, where 9 misclassifications occurred, primarily due to their

syntactic resemblance in Solidity’s error-handling structures. Overall, the model

accurately classified 4,085 out of 4,360 test samples, resulting in a test accuracy

of 93.7%, confirming its robust generalization to unseen data. To further

interpret the model’s decision process, figure 5 visualizes the attention weight

distribution for a smart contract labelled as Re-entrancy, highlighting which code

tokens most influenced the model’s prediction.

Figure 5 Attention Heatmap for Re-entrancy Vulnerability

The heatmap reveals that the model focuses on tokens like call. value, send(),

and withdraw() with attention weights above 0.82, while less critical tokens like

variable declarations (uint, address) receive weights below 0.2. This confirms

that the attention layer successfully highlights semantically relevant patterns in

Solidity code, making the model explainable and aligned with human expert

reasoning. For benchmarking, the BiLSTM + Attention model was compared

against CNN, LSTM, and GRU architectures. The quantitative results are shown

in table 4.

Table 4 Performance Comparison with Baseline Models

Model Architecture Accuracy Macro F1
Training Time

(min)

CNN
1D Convolutional

Neural Network
90.1% 0.88 25

LSTM
Single-directional

LSTM
88.4% 0.86 27

GRU
Gated Recurrent

Unit
91.5% 0.89 26

BiLSTM +

Attention

(Proposed)

Bidirectional LSTM

with Additive

Attention

93.7% 0.92 30

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

40

As shown in table 4, the proposed BiLSTM + Attention model achieved an

overall accuracy of 93.7%, outperforming all baseline architectures—CNN by

3.6%, LSTM by 5.3%, and GRU by 2.2%. This consistent improvement across

models demonstrates the advantage of integrating both bidirectional sequence

processing and attention weighting, which enable the network to capture

complex, long-range dependencies within Solidity code. Moreover, the macro

F1-score increased by 0.06 compared to the standard LSTM model (0.92 vs.

0.86), underscoring the model’s superior ability to balance precision and recall

across multiple vulnerability categories, while maintaining high interpretability

through attention-based focus on semantically significant tokens.

As shown in table 5, the model demonstrates high stability across all eight

vulnerability classes, with a low F1-score variance (σ = 0.05), indicating

consistent predictive performance regardless of class frequency or code

complexity. This stability reflects the model’s robustness in capturing both

dominant and rare vulnerability patterns effectively. Furthermore, the attention

scores closely align with expert-defined vulnerability indicators, such as the

presence of a call. value, send(), and withdraw() functions in Re-entrancy cases,

confirming that the model’s focus corresponds to human-understood risk

factors. This alignment highlights the interpretability advantage of the BiLSTM +

Attention framework over non-attention models, as it not only enhances

prediction accuracy but also provides meaningful insights into the reasoning

behind each classification decision.

Table 5 Summary of Key Experimental Results

Metric Result Observation

Test Accuracy 93.7%
Strong generalization on unseen

contracts

Macro F1-Score 0.92 Balanced across all eight classes

Best Class Reentrancy (F1 = 0.96) Distinct recursive calling patterns

Weakest Class
Short Address Attack (F1 =

0.81)
Limited data availability

Average Epochs 15
Converged early with stable

validation loss

Avg. Training Time 30 minutes Efficient on RTX 3060 GPU

Baseline Improvement +5.3% (vs. LSTM) Benefit from attention integration

Top Tokens (Attention) call.value, send(), withdraw()
High-weight indicators of

reentrancy

Discussion

The experimental findings demonstrate that the proposed BiLSTM + Attention

model effectively captures complex sequential dependencies in Solidity smart

contract code, achieving a test accuracy of 93.7 percent and a macro F1-score

of 0.92 across eight distinct vulnerability categories. Similar findings have been

reported in prior studies, which show that bidirectional recurrent architectures

are well suited for modeling long range dependencies in smart contract code

and outperform unidirectional models in multi vulnerability detection tasks [14],

[16], [25]. These results validate the model’s ability to identify vulnerability

patterns that often span multiple lines of code and require contextual

understanding of function calls, variable interactions, and control structures, as

also emphasized in recent surveys on learning based smart contract

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

41

vulnerability detection [12], [18], [23].

Compared to traditional architectures such as CNN, LSTM, and GRU, the

proposed model exhibits performance improvements in the range of 2.2 percent

to 5.3 percent, confirming that bidirectional learning and attention based feature

weighting significantly enhance both precision and interpretability. This

observation is consistent with previous works showing that hybrid or attention

enhanced deep learning models, including CNN RNN and GRU based hybrids,

consistently outperform single architecture baselines in smart contract

vulnerability detection [19], [20], [26].

A key insight from the results is the consistent stability of classification

performance across all vulnerability types, indicated by a low F1 variance with

sigma equal to 0.05. The model demonstrates strong predictive reliability not

only for high frequency vulnerabilities such as Reentrancy and Integer Overflow,

but also for less common types like Denial of Service and Short Address Attack.

Prior studies similarly report that attention mechanisms help mitigate

performance degradation caused by class imbalance by emphasizing

semantically important tokens and execution patterns [14], [19], [26]. This

stability suggests that the attention mechanism helps the model focus on

semantically meaningful patterns, thereby compensating for moderate class

imbalance. The model’s robustness in handling limited data for minority classes

also aligns with findings that bidirectional sequence models improve

generalization in opcode and token based vulnerability detection settings [15],

[24], [25].

From an interpretability standpoint, the attention heatmap visualizations reveal

that the model assigns higher attention weights to syntactically and semantically

critical tokens such as msg.sender.call.value, send(), and withdraw() that are

directly associated with Reentrancy vulnerabilities. This behavior is consistent

with prior attention based and explainable artificial intelligence approaches,

which show that attention scores often align with expert defined vulnerability

indicators in Ethereum smart contracts [19], [22], [26], [27]. Such alignment

verifies that the model’s decision making process is transparent and consistent

with human reasoning in vulnerability assessment, an aspect widely recognized

as essential for trustworthy artificial intelligence assisted auditing tools [12], [22].

Despite the strong results, several limitations remain. The model’s performance

is slightly lower for low frequency classes such as Short Address Attack due to

limited training samples, reflecting a common challenge identified in smart

contract vulnerability datasets [8], [12], [18]. Future work could address this

issue through data augmentation techniques, class weighted loss functions, or

synthetic contract generation, as suggested in recent deep learning based

studies on blockchain security analytics [16], [24]. Additionally, while the

BiLSTM + Attention framework captures contextual information effectively, it

operates primarily on token level representations and may miss deeper

semantic dependencies. Prior research indicates that integrating structural

representations such as control flow graphs, data flow graphs, or graph neural

networks can further improve vulnerability detection performance [12], [17], [23].

From a broader perspective, the results demonstrate that deep sequential

learning combined with attention mechanisms provides a practical and

explainable solution for automated smart contract vulnerability detection. This

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

42

conclusion is supported by multiple recent studies showing that attention based

deep learning models offer both high detection accuracy and improved

transparency compared to traditional static analysis tools [14], [19], [26]. By

identifying risky code patterns with high accuracy and interpretability, the

proposed model can significantly reduce manual auditing time and enhance the

reliability of decentralized systems, contributing to the advancement of

explainable artificial intelligence frameworks for blockchain security and smart

contract auditing [22], [27].

Conclusion

This study presented a deep learning-based framework for automated smart

contract vulnerability detection using a BiLSTM network combined with an

Attention Mechanism. By leveraging the sequential and contextual

characteristics of Solidity code, the proposed model demonstrated a strong

capability to identify various security weaknesses in blockchain smart contracts.

Using the SC_Vuln_8label.csv dataset, which consists of 12,520 labeled Solidity

contracts spanning eight vulnerability types, the model achieved an impressive

93.7% test accuracy, 0.93 precision, and a macro F1-score of 0.92. These

results confirm that the integration of bidirectional learning and attention-based

weighting significantly enhances the model’s ability to capture long-range

dependencies and focus on semantically important code segments relevant to

vulnerability detection.

The findings reveal that the model performs exceptionally well for high-

frequency vulnerability types such as Re-entrancy (F1 = 0.96) and Integer

Overflow (F1 = 0.93), while maintaining stable detection across less frequent

categories, with all classes achieving F1-scores above 0.80. This consistent

performance demonstrates the model’s resilience to class imbalance and its

ability to generalize across diverse Solidity code structures. Moreover, the

attention visualization results provide a clear interpretive advantage, highlighting

key code tokens such as call.value, send(), and withdraw() that correspond to

vulnerability-inducing operations. Such interpretability is essential for building

trustworthy AI auditing tools that complement human expert judgment in

blockchain security analysis.

Despite these promising results, certain limitations remain. The model’s

performance declines slightly for underrepresented vulnerabilities like Short

Address Attack (F1 = 0.81) due to limited data diversity. Additionally, the

BiLSTM + Attention architecture, while effective at capturing linear token

dependencies, does not fully represent control-flow and data-flow relationships

inherent in smart contracts. Future research should therefore explore the

integration of GNNs or Transformer-based architectures (e.g., CodeBERT,

GraphCodeBERT) to enrich semantic understanding. Expanding the dataset to

include real-world contract samples from multiple blockchains and incorporating

adversarial training to simulate obfuscated attack patterns could further improve

robustness.

In summary, this research demonstrates that combining BiLSTM’s contextual

sequence learning with attention-based interpretability offers a powerful and

explainable approach for detecting vulnerabilities in blockchain smart contracts.

The model’s high accuracy, interpretability, and generalization capacity position

it as a valuable foundation for developing automated smart contract auditing

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

43

systems, thereby contributing to the advancement of secure and reliable

blockchain ecosystems. Future work will aim to extend this framework toward

real-time vulnerability monitoring tools and cross-chain security analytics,

supporting the broader vision of trustworthy, transparent, and resilient

decentralized applications.

Declarations

Author Contributions

Conceptualization: U.R., Q.A.; Methodology: U.R.; Software: U.R.; Validation:

Q.A.; Formal Analysis: U.R.; Investigation: U.R.; Resources: Q.A.; Data

Curation: U.R.; Writing – Original Draft Preparation: U.R.; Writing – Review and

Editing: Q.A.; Visualization: U.R.; All authors have read and agreed to the

published version of the manuscript.

Data Availability Statement

The data presented in this study are available on request from the

corresponding author.

Funding

The authors received no financial support for the research, authorship, and/or

publication of this article.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported

in this paper.

References

[1] V. Ali, A. Norman, and S. Azzuhri, “Characteristics of blockchain and its relationship

with trust,” IEEE Access, vol. 11, no. Feb., pp. 15364–15374, 2023, doi:

10.1109/ACCESS.2023.3243700.

[2] S. Singh, A. Gaur, and D. Singh, “Blockchain-based governance: Implications for

organizational boundaries and structures,” Br. J. Manag., vol. 2023, no. Jun., pp.

1–18, 2023, doi: 10.1111/1467-8551.12784.

[3] G. K. Ghodke and J. R. Pawar, “Decentralized finance: The blockchain and crypto

era,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 2024, no. Mar., pp. 1–8, 2024, doi:

10.22214/ijraset.2024.66126.

[4] S. Ojog and A.-A. Miron, “Improving CSR transparency through

blockchain,” Pertanika Proc., vol. 2025, no. Apr., pp. 1–10, 2025, doi:

10.47836/pp.1.1.003.

[5] S. Akhtar, M. Taimoor, G. Fatima, and H. Islam, “Blockchain technology for secure

transactions: A decentralized approach to data integrity and trust,” Crit. Rev. Soc.

Sci. Stud., vol. 2025, no. May, pp. 1–12, 2025, doi: 10.59075/sn3wnw89.

https://doi.org/10.1109/ACCESS.2023.3243700
https://doi.org/10.1109/ACCESS.2023.3243700
https://doi.org/10.1109/ACCESS.2023.3243700
https://doi.org/10.1111/1467-8551.12784
https://doi.org/10.1111/1467-8551.12784
https://doi.org/10.1111/1467-8551.12784
https://doi.org/10.22214/ijraset.2024.66126
https://doi.org/10.22214/ijraset.2024.66126
https://doi.org/10.22214/ijraset.2024.66126
https://doi.org/10.47836/pp.1.1.003
https://doi.org/10.47836/pp.1.1.003
https://doi.org/10.47836/pp.1.1.003
https://doi.org/10.59075/sn3wnw89
https://doi.org/10.59075/sn3wnw89
https://doi.org/10.59075/sn3wnw89

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

44

[6] I. Gupta and P. Jain, “Expected impact of decentralization using blockchain-based

technologies,” Sci. J. Metaverse Blockchain Technol., vol. 2023, no. Jan., pp. 1–9,

2023, doi: 10.36676/sjmbt.v1i1.07.

[7] N. R. Pendli, S. Naveen, H. M. Maria, A. Chezhian, and H. L. Yadav, “Blockchain

for zero-trust security models: A decentralized approach to enterprise

cybersecurity,” J. Inf. Syst. Eng. Manag., vol. 10, no. 33s, pp. 1–12, 2025, doi:

10.52783/jisem.v10i33s.5651.

[8] S. Vani, M. Doshi, A. Nanavati, and A. Kundu, “Vulnerability analysis of smart

contracts,” arXiv, Dec. 2022, pp. 1–15, doi: 10.48550/arxiv.2212.07387.

[9] M. A. T. Golo and J. I. Teleron, “Unveiling blockchain’s power: Revolutionizing

networking with trust, security, and transparent data traceability,” Int. J. Adv. Res.

Sci. Commun. Technol., vol. 2023, no. Aug., pp. 1–8, 2023, doi: 10.48175/ijarsct-

14028.

[10] M. K. Pasupuleti, “Decentralized creativity: AI-infused blockchain for secure and

transparent digital innovation,” Natl. Econ. Sci. Explor., vol. 2025, no. Jun., pp. 1–

10, 2025, doi: 10.62311/nesx/rrvi125.

[11] D. A. S, K. S, and K. D, “Blockchain technology: A new era of transaction

processing (decentralized, secure ledger transforming global transaction

processes),” Int. J. Sci. Res. Eng. Manag., vol. 2024, no. Apr., pp. 1–9, 2024, doi:

10.55041/ijsrem37977.

[12] C. D. Baets, B. Suleiman, A. Chitizadeh, and I. Razzak, “Vulnerability detection in

smart contracts: A comprehensive survey,” arXiv, Jul. 2024, pp. 1–28, doi:

10.48550/arxiv.2407.07922.

[13] L. F. Jumma, L. Sharifi, and P. Rashidi, “A scalable and explainable framework for

detecting Ponzi schemes in Ethereum smart contracts,” Sustain. Eng. Innov., vol.

7, no. 2, pp. 1–14, 2025, doi: 10.37868/sei.v7i2.id495.

[14] Z. Wang, G. Liu, H. Xu, S. You, H. Ma, and H. Wang, “Deep learning-based

methodology for vulnerability detection in smart contracts,” PeerJ Comput. Sci., vol.

10, no. Mar., pp. 1–18, 2024, doi: 10.7717/peerj-cs.2320.

[15] J. Zhu, X. Xing, G. Wang, and P. Li, “Opcode sequences-based smart contract

vulnerabilities detection using deep learning,” Trust, Security and Privacy in

Computing and Communications, vol. 2023, no. Aug., pp. 284–291, 2023, doi:

10.1109/TRUSTCOM60117.2023.00057.

[16] X. Tang, Y. Du, A. Lai, Z. Zhang, and L. Shi, “Deep learning-based solution for

smart contract vulnerabilities detection,” Sci. Rep., vol. 13, no. Jun., pp. 1–14,

2023, doi: 10.1038/s41598-023-47219-0.

[17] L. S. H. Colin, P. M. Mohan, J. Pan, and P. L. K. Keong, “An integrated smart

contract vulnerability detection tool using multilayer perceptron on real-time Solidity

smart contracts,” IEEE Access, vol. 12, no. Feb., pp. 23549–23567, 2024, doi:

10.1109/ACCESS.2024.3364351.

[18] S. Vhatkar and K. Singh, “Examination of approaches for identifying vulnerabilities

in smart contracts,” J. Electr. Syst., vol. 2024, no. Apr., pp. 1–12, 2024, doi:

10.52783/jes.2322.

[19] L. Han, “Smart contract reentrancy vulnerability detection based on CNN and

LSTM-attention,” Artificial Intelligence, Networking and Information Technology,

vol. 2024, no. May, pp. 147–151, 2024, doi: 10.1109/AINIT61980.2024.10581851.

[20] L. Zhang, W. Chen, W. Wang, Z. Jin, C. Zhao, Z. Cai, and H. Chen, “CBGRU: A

detection method of smart contract vulnerability based on a hybrid

model,” Sensors, vol. 22, no. 9, pp. 1–16, May 2022, doi: 10.3390/s22093577.

https://doi.org/10.36676/sjmbt.v1i1.07
https://doi.org/10.36676/sjmbt.v1i1.07
https://doi.org/10.36676/sjmbt.v1i1.07
https://doi.org/10.52783/jisem.v10i33s.5651
https://doi.org/10.52783/jisem.v10i33s.5651
https://doi.org/10.52783/jisem.v10i33s.5651
https://doi.org/10.52783/jisem.v10i33s.5651
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.48175/ijarsct-14028
https://doi.org/10.48175/ijarsct-14028
https://doi.org/10.48175/ijarsct-14028
https://doi.org/10.48175/ijarsct-14028
https://doi.org/10.62311/nesx/rrvi125
https://doi.org/10.62311/nesx/rrvi125
https://doi.org/10.62311/nesx/rrvi125
https://doi.org/10.55041/ijsrem37977
https://doi.org/10.55041/ijsrem37977
https://doi.org/10.55041/ijsrem37977
https://doi.org/10.55041/ijsrem37977
https://doi.org/10.48550/arxiv.2407.07922
https://doi.org/10.48550/arxiv.2407.07922
https://doi.org/10.48550/arxiv.2407.07922
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.1109/TRUSTCOM60117.2023.00057
https://doi.org/10.1109/TRUSTCOM60117.2023.00057
https://doi.org/10.1109/TRUSTCOM60117.2023.00057
https://doi.org/10.1109/TRUSTCOM60117.2023.00057
https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.1038/s41598-023-47219-0
https://doi.org/10.1109/ACCESS.2024.3364351
https://doi.org/10.1109/ACCESS.2024.3364351
https://doi.org/10.1109/ACCESS.2024.3364351
https://doi.org/10.1109/ACCESS.2024.3364351
https://doi.org/10.52783/jes.2322
https://doi.org/10.52783/jes.2322
https://doi.org/10.52783/jes.2322
https://doi.org/10.1109/AINIT61980.2024.10581851
https://doi.org/10.1109/AINIT61980.2024.10581851
https://doi.org/10.1109/AINIT61980.2024.10581851
https://doi.org/10.3390/s22093577
https://doi.org/10.3390/s22093577
https://doi.org/10.3390/s22093577

 Journal of Current Research in Blockchain

Raharja and Aini. (2026) J. Curr. Res. Blockchain.

45

[21] S.-Y. Chen and F. Li, “Ponzi scheme detection in smart contracts using the

integration of deep learning and formal verification,” IET Blockchain, vol. 4, no.

Sep., pp. 185–196, 2023, doi: 10.1049/blc2.12056.

[22] L. F. Jumma, L. Sharifi, and P. Rashidi, “Explainable artificial intelligence for fraud

detection in Ethereum smart contracts,” Sustain. Eng. Innov., vol. 7, no. 2, pp. 1–

14, 2025, doi: 10.37868/sei.v7i2.id495.

[23] S. Vani, M. Doshi, A. Nanavati, and A. Kundu, “Survey of static and learning-based

vulnerability detection techniques for smart contracts,” arXiv, Dec. 2022, pp. 1–22,

doi: 10.48550/arxiv.2212.07387.

[24] S. Vhatkar and K. Singh, “Deep learning models for opcode-based smart contract

vulnerability detection,” J. Electr. Syst., vol. 2024, no. Aug., pp. 1–14, 2024, doi:

10.52783/jes.2322.

[25] Z. Wang, G. Liu, H. Xu, S. You, H. Ma, and H. Wang, “Bidirectional deep learning

models for multi-vulnerability detection in smart contracts,” PeerJ Comput. Sci., vol.

10, no. Jun., pp. 1–20, 2024, doi: 10.7717/peerj-cs.2320.

[26] S.-Y. Chen and F. Li, “Attention-based deep learning techniques for smart contract

fraud detection,” IET Blockchain, vol. 4, no. Nov., pp. 1–12, 2023, doi:

10.1049/blc2.12056.

[27] L. F. Jumma, L. Sharifi, and P. Rashidi, “Explainable and scalable artificial

intelligence models for blockchain security auditing,” Sustain. Eng. Innov., vol. 7,

no. 2, pp. 1–16, 2025, doi: 10.37868/sei.v7i2.id495.

https://doi.org/10.1049/blc2.12056
https://doi.org/10.1049/blc2.12056
https://doi.org/10.1049/blc2.12056
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.48550/arxiv.2212.07387
https://doi.org/10.52783/jes.2322
https://doi.org/10.52783/jes.2322
https://doi.org/10.52783/jes.2322
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.7717/peerj-cs.2320
https://doi.org/10.1049/blc2.12056
https://doi.org/10.1049/blc2.12056
https://doi.org/10.1049/blc2.12056
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495
https://doi.org/10.37868/sei.v7i2.id495

